首页> 外文期刊>Computer Speech and Language >Maximum likelihood linear transformations for HMM-based speech recognition
【24h】

Maximum likelihood linear transformations for HMM-based speech recognition

机译:基于HMM的语音识别的最大似然线性变换

获取原文
获取原文并翻译 | 示例

摘要

This paper examines the application of linear transformations for speaker and environmental adaptation in an HMM-based speech recognition system. In particular, transformations that are trained in a maximum likelihood sense on adaptation data are investigated. Only model-based linear transforms are considered, since, for linear transforms, they subsume the appropriate feature-space transforms. The paper compares the two possible forms of model-based transforms: (ⅰ) unconstrained, where any combination of mean and variance transform may be used, and (ⅱ) constrained, which requires the variance transform to have the same form as the mean transform. Re-estimation formulae for all appropriate cases of transform are given. This includes a new and efficient full variance transform and the extension of the constrained model-space transform from the simple diagonal case to the full or block-diagonal case. The constrained and unconstrained transforms are evaluated in terms of computational cost, recognition time efficiency, and use for speaker adaptive training. The recognition performance of the two model-space transforms on a large vocabulary speech recognition task using incremental adaptation is investigated. In addition, initial experiments using the constrained model—space transform for speaker adaptive training are detailed.
机译:本文研究了线性变换在基于HMM的语音识别系统中对说话人和环境适应的应用。特别地,研究了在适应性数据上以最大似然感训练的变换。仅考虑基于模型的线性变换,因为对于线性变换,它们包含适当的特征空间变换。本文比较了基于模型的变换的两种可能形式:(ⅰ)无约束,其中可以使用均值和方差变换的任意组合;以及(ⅱ)受约束,这要求方差变换具有与均值变换相同的形式。给出了所有适当变换情况的重估计公式。这包括一个新的有效的全方差变换,以及受约束的模型空间变换从简单对角情况到全对角或块对角情况的扩展。根据计算成本,识别时间效率以及用于说话人自适应训练的方式来评估受约束和不受约束的变换。研究了使用增量自适应对两种模型空间变换在大型词汇语音识别任务上的识别性能。此外,还详细介绍了使用约束模型-空间变换进行说话人自适应训练的初步实验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号