首页> 外文期刊>Computer speech and language >A novel approach to unsupervised pattern discovery in speech using Convolutional Neural Network
【24h】

A novel approach to unsupervised pattern discovery in speech using Convolutional Neural Network

机译:一种使用卷积神经网络言语中无监督模式发现的新方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a novel approach to unsupervised pattern discovery for speech signals is proposed. Recently, we introduced an image processing method (IPM) that extracts the desired keywords present in a pair of speech utterances. This method performs well in detecting true positives but, at the same time it also detects higher number of false positives. Therefore, this paper aims to reduce the detection of false positives and improve the accuracy of the pattern discovery task. In the proposed work, we use the Convolutional Neural Network (CNN) as a binary classifier to detect the true and false keyword match candidates. A new frame histogram technique is introduced to generate sufficient training samples from IPM to train the CNN. The trained CNN model classifies the matched patterns into true and false classes and identifies the pairs of speech documents that contain the same keyword. The proposed method is evaluated on the Hindi as well as Bengali speech databases. The results are compared with state-of-the-art methods. The detected matched pairs of speech utterances are grouped into broader domain clusters using Newman's clustering algorithm. These clusters are useful for speech retrieval tasks.
机译:本文提出了一种对语音信号的无监督模式发现的新方法。最近,我们介绍了一种图像处理方法(IPM),其提取在一对语音发声中存在的所需关键字。该方法在检测到真正的阳性时表现良好,但同时它还检测到更高数量的误报。因此,本文旨在减少误报的检测,提高图案发现任务的准确性。在拟议的工作中,我们使用卷积神经网络(CNN)作为二进制分类器来检测真实和假关键字匹配候选。引入了新的帧直方图技术,以产生来自IPM的足够的训练样本以培训CNN。训练有素的CNN模型将匹配的模式分类为真实和虚假的类,并标识包含相同关键字的语音文档对。所提出的方法是在印地语和孟加拉语音数据库上进行评估。结果与最先进的方法进行比较。使用Newman的聚类算法将检测到的匹配对语音发声分组为更宽的域集群。这些群集对于语音检索任务很有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号