首页> 外文期刊>Computer speech and language >Turn-taking in Conversational Systems and Human-Robot Interaction: A Review
【24h】

Turn-taking in Conversational Systems and Human-Robot Interaction: A Review

机译:在会话系统和人体机器人互动中的转向:审查

获取原文
获取原文并翻译 | 示例

摘要

The taking of turns is a fundamental aspect of dialogue. Since it is difficult to speak and listen at the same time, the participants need to coordinate who is currently speaking and when the next person can start to speak. Humans are very good at this coordination, and typically achieve fluent turn-taking with very small gaps and little overlap. Conversational systems (including voice assistants and social robots), on the other hand, typically have problems with frequent interruptions and long response delays, which has called for a substantial body of research on how to improve turn-taking in conversational systems. In this review article, we provide an overview of this research and give directions for future research. First, we provide a theoretical background of the linguistic research tradition on turn-taking and some of the fundamental concepts in theories of turn-taking. We also provide an extensive review of multi-modal cues (including verbal cues, prosody, breathing, gaze and gestures) that have been found to facilitate the coordination of turn-taking in human-human interaction, and which can be utilised for turn-taking in conversational systems. After this, we review work that has been done on modelling turn-taking, including end-of-turn detection, handling of user interruptions, generation of turn-taking cues, and multi-party human-robot interaction. Finally, we identify key areas where more research is needed to achieve fluent turn-taking in spoken interaction between man and machine.
机译:轮流是对话的基本方面。由于同时难以说话和倾听,所以参与者需要协调目前正在发言的谁,当下一个人可以开始说话时。人类在这种协调方面非常擅长,通常实现流利的转弯,非常小的差距,几乎没有重叠。另一方面,会话系统(包括语音助理和社会机器人)通常存在频繁中断和长期响应延迟的问题,该延迟呼吁对如何改善对话系统中的转弯的研究大量研究。在本文中,我们提供了本研究的概述,并给出了未来研究的指示。首先,我们提供了语言研究传统的理论背景,转弯和某些基本概念在轮回的理论中。我们还提供了对多模态线索的广泛审查(包括口头线索,韵律,呼吸,凝视和手势),这些提示促进了人类互动的转型协调,并且可以用于转弯 - 参加会话系统。在此之后,我们审查了在建模轮盘上完成的工作,包括转向末端检测,处理用户中断,转弯线索的产生以及多方人机交互。最后,我们识别需要更多研究以实现人类和机器之间的口头互动的流利的转弯所需的关键领域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号