首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Mixed and nonconforming finite element approximations of Reissner-Mindlin plates
【24h】

Mixed and nonconforming finite element approximations of Reissner-Mindlin plates

机译:Reissner-Mindlin板的混合和非协调有限元逼近

获取原文
获取原文并翻译 | 示例

摘要

We consider a mixed finite element approximation of the Reissner-Mindlin plate model, which plays an important role in the simulation of plates and shells of small to moderate thickness. On triangles and quadrilaterals, low-order finite elements are proposed: the rotation is approximated by conforming isoparametric (bi)linear elements and the transverse displacement by constant elements and the shear stress by the lowest-order Raviart-Thomas elements. We prove that the new method satisfies the K-ellipticity and the Inf-Sup condition in the abstract framework of the Babuska-Brezzi theory for mixed problems. Consequently, the method is uniformly stable and uniformly optimally convergent (independent of the thickness of the plate). Moreover, a local postprocessing approach and the implementation by either the augmented Lagrangian algorithm or the hybridization method are discussed, including equivalence to some nonconforming methods. In particular, a new nonconforming method is deduced, which can accommodate arbitrary regular quadrilaterals.
机译:我们考虑了Reissner-Mindlin板模型的混合有限元近似,它在模拟中小厚度的板和壳时起着重要作用。在三角形和四边形上,提出了低阶有限元:用等参(双)线性元逼近旋转,用常数元进行横向位移,用最低阶Raviart-Thomas元进行剪应力。我们证明了该新方法在混合问题的Babuska-Brezzi理论的抽象框架中满足K-椭圆率和Inf-Sup条件。因此,该方法是一致稳定的,并且一致地是最佳收敛的(与板的厚度无关)。此外,还讨论了局部后处理方法以及通过增强拉格朗日算法或杂交方法实现的方法,包括与某些不合格方法的等效性。特别是,推导了一种新的不合格方法,该方法可以容纳任意规则的四边形。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号