首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Improving stability and accuracy of Reissner-Mindlin plate finite elements via algebraic subgrid scale stabilization
【24h】

Improving stability and accuracy of Reissner-Mindlin plate finite elements via algebraic subgrid scale stabilization

机译:通过代数子网格尺度稳定化提高Reissner-Mindlin板有限元的稳定性和准确性

获取原文
获取原文并翻译 | 示例

摘要

Stabilized finite element methods for the solution of Reissner/Mindlin-type plate problems are presented. The formulations are based on previously described mixed formulations, like the assumed natural strain (ANS or MITC) concept or the discrete shear gap (DSG) method. In particular, the algebraic subgrid scale (ASGS) formulation is used for the stabilization term. The essential idea is to obtain stable elements and improve coarse mesh accuracy at the same time. It is shown how this can be achieved by a proper choice of stabilization parameters on the basis of physical insight into the mechanical behavior of shear deformable plates. In this context there is a strong relationship to concepts that have been developed long before stabilization techniques appeared in finite element technology, particularly the 'residual bending flexibility' or 'deflection matching' technique.
机译:提出了用于解决Reissner / Mindlin型板问题的稳定有限元方法。该配方基于先前描述的混合配方,例如假定的自然应变(ANS或MITC)概念或离散剪切间隙(DSG)方法。特别地,将代数子网格规模(ASGS)公式用于稳定项。基本思想是要获得稳定的元素并同时提高粗网格精度。它显示了如何根据对剪切变形板的力学行为的物理认识,通过适当选择稳定参数来实现这一目标。在这种情况下,与在有限元技术中出现稳定技术(特别是“残余弯曲柔韧性”或“挠度匹配”技术)很久之前就已经开发出的概念有着密切的关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号