首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Truncated hierarchical Catmull-Clark subdivision with local refinement
【24h】

Truncated hierarchical Catmull-Clark subdivision with local refinement

机译:截断的Catmull-Clark细分层次结构,具有局部改进功能

获取原文
获取原文并翻译 | 示例

摘要

In this paper we present a new method termed Truncated Hierarchical Catmull-Clark Subdivision (THCCS), which generalizes truncated hierarchical B-splines to control grids of arbitrary topology. THCCS basis functions satisfy partition of unity, are linearly independent, and are locally refinable. THCCS also preserves geometry during adaptive h-refinement and thus inherits the surface continuity of Catmull-Clark subdivision, namely C-2-continuous everywhere except at the local region surrounding extraordinary nodes, where the surface continuity is C-1. Adaptive isogeometric analysis is performed with THCCS basis functions on a benchmark problem with extraordinary nodes. Local refinement on complex surfaces is also studied to show potential wide application of the proposed method. (C) 2015 Elsevier B.V. All rights reserved.
机译:在本文中,我们提出了一种称为截断层次Catmull-Clark细分(THCCS)的新方法,该方法可以将截断的层次B样条广义化以控制任意拓扑的网格。 THCCS基本函数满足单位划分,线性独立,并且可以局部优化。 THCCS在自适应h细化过程中还保留了几何形状,因此继承了Catmull-Clark细分的表面连续性,即C-2连续的各处,除了非连续节点周围的局部区域(表面连续性为C-1)。使用THCCS基函数对具有异常节点的基准问题执行自适应等几何分析。还研究了复杂表面上的局部细化,以显示该方法的潜在广泛应用。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号