首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Stabilized mixed displacement-pressure finite element formulation for linear hydrodynamic problems with free surfaces
【24h】

Stabilized mixed displacement-pressure finite element formulation for linear hydrodynamic problems with free surfaces

机译:具有自由表面的线性流体动力问题的稳定混合位移-压力有限元公式

获取原文
获取原文并翻译 | 示例

摘要

A mixed displacement pressure formulation of the Stokes problem for incompressible fluids with free surfaces is developed for modeling the propagation of gravity waves in liquids and their interaction with structures using a Lagrangian approach. We assume that fluid displacements are small, making convective effects negligible and approximate the fluid velocities from the time derivative of the displacements. The resulting finite element equations are discretized with equal order for both displacement and pressure terms, together with employing stabilization techniques that circumvent the inf-sup requirements. The stability and accuracy of the methodology is finally demonstrated by solving some classical problems of hydrodynamics with free surfaces, comparing the results with known analytical solutions. (C) 2017 Elsevier B.V. All rights reserved.
机译:开发了具有自由表面的不可压缩流体的斯托克斯问题的混合位移压力公式,以便使用拉格朗日方法对重力波在液体中的传播及其与结构的相互作用进行建模。我们假设流体的排量很小,对流效应可以忽略不计,并且从位移的时间导数中可以近似得出流体的速度。对于位移项和压力项,使用相等的阶数离散化所得的有限元方程式,并采用规避注量要求的稳定技术。通过解决一些带有自由表面的流体动力学经典问题,并将结果与​​已知的分析解决方案进行比较,最终证明了该方法的稳定性和准确性。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号