首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A multiscale mixed finite element method applied to the simulation of two-phase flows
【24h】

A multiscale mixed finite element method applied to the simulation of two-phase flows

机译:一种多尺度混合有限元方法应用于两相流的模拟

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The multiscale hybrid mixed finite element method (MHM-H(div)), previously developed for Darcy's problems, is extended for coupled flow/pressure and transport system of two-phase flow equations on heterogeneous media under the effect of gravitational segregation. It is combined with an implicit transport solver in a sequential fully implicit (SFI) manner. The MHM-H(div) method is designed to cope with the complex geometry and inherent multiscale nature of the phenomena. The discretizations are based on a general domain partition formed by polyhedral subregions, where a hierarchy of meshes and approximation spaces are considered. The multiscale approach is applied to the flux/pressure kernel making use of coarse scale normal fluxes between subregions (trace variable). The fine-scale features inside each subregion are determined by resolving completely independent local Neumann problems, the boundary conditions being set by the trace variable, by the mixed finite element method using fine flux and pressure representations. These properties imply that the MHM-H(div) can be interpreted as a classical mixed formulation of the model problem in the whole domain, based on a H(div)-conforming space with normal components over the macro-partition interfaces constrained by the trace space, and showing divergence compatibility with the pressure space. Consequently, local mass conservation is observed at the micro-scale elements inside the subregions, an essential property for flows in heterogeneous media, and divergence-free constraint strongly enforced for incompressible flows. The efficient use of static condensation leads to a global system to be solved only in terms of primary degrees of freedom associated with the trace variable and of a piecewise constant pressure for each subregion. This procedure allows a substantial reduction of the dominant computational costs associated with the flux/pressure kernel embedded in the numerical model. An iterative coupling technique is adopted to solve the two-phase flow equations using a shared integration point memory implementation model. At each SFI time step, the efficiency iterative method for the transport equations is improved using a Quasi-Newton method with a simple but effective nonlinear acceleration. The numerical examples show that the proposed scheme is able to solve challenging coupled flow and transport problems. (C) 2021 Elsevier B.V. All rights reserved.
机译:以前为达西问题开发的多尺度混合混合有限元方法(MHM-H(DIV))被扩展,用于在引力偏析的效果下的异构介质上的两相流动方程的耦合流量/压力和运输系统。它与顺序完全隐式(SFI)方式的隐式传送求解器组合。 MHM-H(DIV)方法旨在应对现象的复杂几何形状和固有的多尺度性质。离散化基于多面体子区域形成的一般域分区,其中考虑网格和近似空间的层次结构。多尺度方法应用于磁通/压力核,利用子区域(迹线变量)之间的粗略标度正常助熔剂。每个子区域内的细尺特征是通过解决完全独立的本地Neumann问题来确定的,通过使用细通量和压力表示的混合有限元方法来解决完全独立的本地Neumann问题,由跟踪变量设定的边界条件。这些属性意味着MHM-H(DIV)可以基于H(div) - 在由宏分区接口上由宏分区接口上的正常组件的H(div)来解释为整个域中的模型问题的经典混合制定。跟踪空间,并显示与压力空间的分歧兼容性。因此,在子区域内的微级元素处观察到局部质量保护,在异构介质中流动的基本性质,并且对于不可压缩流动强度强制执行的无流动约束。静态凝结的有效使用导致全球系统仅在与迹线变量相关联的主要自由度和每个子区域的分段恒定压力方面才能解决。该过程允许大幅减少与嵌入数值模型中的磁通/压力内核相关的显性计算成本。采用迭代耦合技术来解决共享集成点存储器实现模型的两相流方程。在每个SFI时间步骤中,使用具有简单但有效的非线性加速的准牛顿方法改进了传输方程的效率迭代方法。数值示例表明,该方案能够解决具有挑战性的耦合流动和运输问题。 (c)2021 elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号