首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >A fully decoupled, linear and unconditionally energy stable numerical scheme for a melt-convective phase-field dendritic solidification model
【24h】

A fully decoupled, linear and unconditionally energy stable numerical scheme for a melt-convective phase-field dendritic solidification model

机译:熔体-对流相场枝晶凝固模型的完全解耦,线性和无条件能量稳定数值方案

获取原文
获取原文并翻译 | 示例

摘要

We consider in this paper numerical approximations of a melt-convective phase-field dendritic solidification model. A challenging numerical issue for solving this model is how to develop efficient time marching schemes that are not only unconditionally energy stable, but also linear and totally decoupled since the model is a highly coupled nonlinear system. We solve this issue by combining the modified projection scheme for the Navier-Stokes equations, the stabilized-Invariant Energy Quadratization method for the anisotropic phase field equation. Meanwhile, in order to obtain the fully decoupled feature, we introduce an auxiliary intermediate temperature variable to decouple the computation of the temperature from the phase field variable. We prove the unconditional energy stability of the developed scheme and further present various numerical simulations in 2D and 3D to demonstrate the accuracy and stability of the developed scheme. (C) 2020 Elsevier B.V. All rights reserved.
机译:我们在本文中考虑熔融对流相场树状凝固模型的数值近似。解决该模型的一个具有挑战性的数值问题是如何开发有效的时间行进方案,该方案不仅无条件地保持能量稳定,而且由于模型是高度耦合的非线性系统,因此也线性且完全解耦。我们通过将改进的Navier-Stokes方程投影方案与各向异性相场方程的稳定不变能量平方化方法相结合来解决此问题。同时,为了获得完全解耦的特征,我们引入了一个辅助中间温度变量,以将温度计算与相场变量解耦。我们证明了所开发方案的无条件能量稳定性,并进一步在2D和3D中提供了各种数值模拟,以证明所开发方案的准确性和稳定性。 (C)2020 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号