首页> 外文期刊>Computational Optimization and Applications >Dissimilarity measures for population-based global optimization algorithms
【24h】

Dissimilarity measures for population-based global optimization algorithms

机译:基于总体的全局优化算法的差异度量

获取原文
获取原文并翻译 | 示例

摘要

Very hard optimization problems, i.e., problems with a large number of variables and local minima, have been effectively attacked with algorithms which mix local searches with heuristic procedures in order to widely explore the search space. A Population Based Approach based on a Monotonic Basin Hopping optimization algorithm has turned out to be very effective for this kind of problems. In the resulting algorithm, called Population Basin Hopping, a key role is played by a dissimilarity measure. The basic idea is to maintain a sufficient dissimilarity gap among the individuals in the population in order to explore a wide part of the solution space.
机译:非常困难的优化问题,即具有大量变量和局部极小值的问题,已被算法有效地攻击,该算法将局部搜索与启发式过程混合在一起,以便广泛地探索搜索空间。事实证明,基于单调盆地跳跃优化算法的基于人口的方法对于此类问题非常有效。在称为人口流域跳频的最终算法中,关键在于不同程度度量。基本思想是在种群中的各个个体之间保持足够的差异,以探索解决方案空间的很大一部分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号