首页> 外文期刊>Computational methods and function theory >Invariant Geometric Properties in Hele-Shaw Flows
【24h】

Invariant Geometric Properties in Hele-Shaw Flows

机译:Hele-Shaw流中的不变几何性质

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we investigate some geometric properties of the moving frontier of a viscous fluid for planar flows in Hele-Shaw cells under injection. We study invariance in time properties of the free boundary for bounded and unbounded domains (with bounded complement) under the assumption of zero surface tension. By applying certain results in the theory of univalent functions we partially solve an open problem of Vasil'ev concerning the invariance in time of starlikeness of order alpha, alpha is an element of[0,1), for bounded domains. In the case of unbounded domains with bounded complement we analyze the invariance in time of convexity of order alpha, alpha is an element of[0, 1).
机译:在本文中,我们研究了注射时Hele-Shaw细胞中平面流动的粘性流体运动边界的一些几何特性。在零表面张力的假设下,我们研究了有界和无界域(具有界补)的自由边界的时间特性不变性。通过在单价函数理论中应用某些结果,我们部分解决了Vasil'ev的一个开放问题,该问题涉及有界域的alpha阶恒星时间不变性,alpha是[0,1)的元素。在具有有限补码的无界域的情况下,我们分析了阶α的凸性时间的不变性,α是[0,1)的元素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号