首页> 外文期刊>Computational Intelligence >Distance dynamics based overlapping semantic community detection for node-attributed networks
【24h】

Distance dynamics based overlapping semantic community detection for node-attributed networks

机译:基于距离动态的节点属性网络重叠语义界检测

获取原文
获取原文并翻译 | 示例

摘要

In recent years, due to the rise of social, biological, and other rich content graphs, several novel community detection methods using structure and node attributes have been proposed. Moreover, nodes in a network are naturally characterized by multiple community memberships and there is growing interest in overlapping community detection algorithms. In this paper, we design a weighted vertex interaction model based on distance dynamics to divide the network, furthermore, we propose a distance Dynamics-based Overlapping Semantic Community detection algorithm(DOSC) for node-attribute networks. The method is divided into three phases: Firstly, we detect local single-attribute subcommunities in each attribute-induced graph based on the weighted vertex interaction model. Then, a hypergraph is constructed by using the subcommunities obtained in the previous step. Finally, the weighted vertex interaction model is used in the hypergraph to get global semantic communities. Experimental results in real-world networks demonstrate that DOSC is a more effective semantic community detection method compared with state-of-the-art methods.
机译:近年来,由于社会,生物学和其他丰富的内容图的兴起,已经提出了几种使用结构和节点属性的新型社区检测方法。此外,网络中的节点自然是由多个社区成员资格的特征,并且对重叠的社区检测算法越来越感兴趣。在本文中,我们设计了一种基于距离动态的加权顶点交互模型,进而,我们提出了一种基于距离动态的重叠语义界检测算法(DOSC),用于节点属性网络。该方法分为三个阶段:首先,我们基于加权顶点交互模型检测每个属性诱导的图表中的本地单个属性子信道。然后,通过使用前一步骤中获得的子汇率来构建超图。最后,在超图中使用加权顶点交互模型来获取全局语义社区。实验结果在现实网络中表明,与最先进的方法相比,DOSC是一种更有效的语义界检测方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号