首页> 外文期刊>Computational Intelligence >Accuracy improvement in air-quality forecasting using regressor combination with missing data imputation
【24h】

Accuracy improvement in air-quality forecasting using regressor combination with missing data imputation

机译:使用回归组合与缺失数据归档的空气质量预测的准确性提高

获取原文
获取原文并翻译 | 示例

摘要

This article proposes a hybrid model based on regressor combination to improve the accuracy of air-quality forecasting. The expectation-maximization algorithm was used to impute the missing values of the dataset. The optimal hyperparameter values for the regressors were found by the grid search approach, depending on the mean absolute error (MAE), in the training session. The regressors having the minimum MAE were then globally combined for prediction. The output of the regressor with the minimum absolute error between the actual and predicted values was chosen as the prediction result of the hybrid model. The performance of the proposed model was compared with that of sequential deep learning methods, namely long short-term memory and gated recurrent unit, in terms of MAE, mean relative error (MRE), and squared correlation coefficient (SCC) metrics. The imputed dataset was divided into training and testing subsets of different durations. According to the experimental results, our hybrid model performed better than the deep learning methods in terms of MAE, MRE, and SCC metrics, irrespective of the training data length. Furthermore, the Akaike's information criterion and the Bayesian information criterion values suggested that the quality of the hybrid model was better than that of the deep learning models.
机译:本文提出了一种基于回归组合的混合模型,提高了空气质量预测的准确性。期望 - 最大化算法用于赋予数据集的缺失值。通过网格搜索方法发现回归的最佳超参数值,具体取决于培训会话中的平均绝对错误(MAE)。然后将具有最小MAE的回收器全球合并以进行预测。选择具有实际和预测值之间的最小绝对误差的回归的输出作为混合模型的预测结果。拟议模型的性能与顺序深度学习方法,即长的短期记忆和门控复发单位的性能进行了比较,在MAE方面,平均相对误差(MRE)和平方相关系数(SCC)度量。避税数据集分为培训和测试子集的不同持续时间。根据实验结果,我们的混合模型比MAE,MRE和SCC度量的深度学习方法更好,无论训练数据长度如何。此外,Akaike的信息标准和贝叶斯信息标准值表明混合动力模型的质量优于深度学习模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号