首页> 外文期刊>Computational Intelligence >On viability of detecting malwares online using ensemble classification method with performance metrics
【24h】

On viability of detecting malwares online using ensemble classification method with performance metrics

机译:用绩效指标使用集合分类方法在线检测恶魔的可行性

获取原文
获取原文并翻译 | 示例

摘要

Nowadays, most of the services from cloud are protuberant within the all commercial, public, and private areas. A primary difficulty of cloud computing system is making a virtualized environment safe from all intruders. The existing system uses signature-based methods, which cannot provide accurate detection of malware. This paper put forward an approach to detect the malware by using the approach based on feature extraction and various classification techniques. Initially the clean files and malware files are extracted. The feature selection includes gain ratio to provide subset features. The classification is used to predict any malware that has been entered in the mobile device. In this paper, it is proposed to use the ensemble classifier which contains different kinds of classifiers such as Support Vector Machine, K-Nearest Neighbor, and Naive Bayes classification. These together are known as a meta classifier. These three classification methods had been used for proposed work and get the results with higher accuracy. This measures the correctness of the prediction happened using ensemble method with high precision and recall values which is specifically identifies the quality of the techniques used.
机译:如今,来自云的大多数服务都是所有商业,公共和私人地区的突起。云计算系统的主要难度正在从所有入侵者中建立虚拟化环境。现有系统使用基于签名的方法,无法提供对恶意软件的准确检测。本文提出了一种方法来通过使用基于特征提取和各种分类技术的方法来检测恶意软件。最初提取清洁文件和恶意软件文件。特征选择包括增益比以提供子集功能。分类用于预测已在移动设备中输入的任何恶意软件。在本文中,建议使用包含不同种类的分类器的集合分类器,例如支持向量机,k最近邻居和天真贝叶斯分类。这些共同称为元分类器。这三种分类方法已被用于拟议的工作,并以更高的准确性获得结果。这测量了使用具有高精度和召回值的集合方法发生的预测的正确性,并记录了专门识别所用技术的质量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号