首页> 外文期刊>Computational Intelligence >Research on personalized recommendation hybrid algorithm for interactive experience equipment
【24h】

Research on personalized recommendation hybrid algorithm for interactive experience equipment

机译:交互式经验设备个性化推荐混合算法研究

获取原文
获取原文并翻译 | 示例

摘要

Interactive calligraphy experience equipment has the characteristics of a large amount of data, various types, and strong homogeneity, which makes it difficult for users to find interesting resources. In this article, a hybrid personalized recommendation algorithm is proposed, which uses collaborative filtering and content-based recommendation methods in turn to make recommendations. In the initial recommendation, Latent Dirichlet Allocation (LDA) topic model is used to reduce the dimension of high-dimensional user behavior data and establish a user-writing theme matrix to reduce inaccurate recommendation caused by high sparsity data in collaborative filtering algorithm. The user interest list is obtained by calculating the similarity between users. Then, on the basis of the preliminary recommendation results, VGG16 model is used to extract the feature vector of the calligraphy image and calculate the similarity between the user's calligraphy words and the primary recommended calligraphy words, thus obtaining the final recommendation results. The experimental results verify the effectiveness and accuracy of the recommendation algorithm, which are better than other recommendation algorithms on the whole, and have important engineering guiding significance.
机译:互动书法体验设备具有大量数据,各种类型和强大同质性的特点,这使得用户难以找到有趣的资源。在本文中,提出了一种混合个性化推荐算法,其使用协作过滤和基于内容的推荐方法反过来提出建议。在初始推荐中,潜在的Dirichlet分配(LDA)主题模型用于减少高维用户行为数据的维度,并建立用户写入主题矩阵,以减少由协同滤波算法中的高稀疏数据引起的不准确推荐。通过计算用户之间的相似性获得用户兴趣列表。然后,在初步推荐结果的基础上,VGG16模型用于提取书法图像的特征向量,并计算用户的书法单词与主要推荐书法词之间的相似性,从而获得最终推荐结果。实验结果验证了推荐算法的有效性和准确性,比整体推荐算法更好,具有重要的工程指导意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号