首页> 外文期刊>Computational Intelligence >A robust similarity based deep Siamese convolutional neural network for gait recognition across views
【24h】

A robust similarity based deep Siamese convolutional neural network for gait recognition across views

机译:基于强大的深度暹蒙卷积神经网络,用于跨视图的步态认可

获取原文
获取原文并翻译 | 示例

摘要

Gait recognition has been considered as the emerging biometric technology for identifying the walking behaviors of humans. The major challenges addressed in this article is significant variation caused by covariate factors such as clothing, carrying conditions and view angle variations will undesirably affect the recognition performance of gait. In recent years, deep learning technique has produced a phenomenal performance accuracy on various challenging problems based on classification. Due to an enormous amount of data in the real world, convolutional neural network will approximate complex nonlinear functions in models to develop a generalized deep convolutional neural network (DCNN) architecture for gait recognition. DCNN can handle relatively large multiview datasets with or without using any data augmentation and fine-tuning techniques. This article proposes a color-mapped contour gait image as gait feature for addressing the variations caused by the cofactors and gait recognition across views. We have also compared the various edge detection algorithms for gait template generation and chosen the best from among them. The databases considered for our work includes the most widely used CASIA-B dataset and OULP database. Our experiments show significant improvement in the gait recognition for fixed-view, crossview, and multiview compared with the recent methodologies.
机译:步态认可被认为是识别人类行走行为的新兴生物识别技术。本文所涉及的主要挑战是由衣服,承载条件和视角变化等协变量引起的显着变化,不合需要地影响步态的识别性能。近年来,基于分类,深入学习技术在各种具有挑战性问题上产生了现象性能准确性。由于现实世界中存在巨大的数据,卷积神经网络将在模型中近似复杂的非线性功能,以开发用于步态识别的广义深卷积神经网络(DCNN)架构。 DCNN可以使用或不使用任何数据增强和微调技术处理相对大的多视图数据集。本文提出了一种颜色映射的轮廓步态形象作为步态特征,用于解决辅助仪器引起的变化和跨视图的步态识别。我们还将各种边缘检测算法与步态模板生成的各种边缘检测算法进行了比较,从中选择了最好的。所考虑的数据库包括最广泛使用的Casia-B DataSet和Oulp数据库。与最近的方法相比,我们的实验表现出对固定视图,Crossview和Multiview的步态认可的显着改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号