首页> 外文期刊>Computational Intelligence >Improved gait recognition through gait energy image partitioning
【24h】

Improved gait recognition through gait energy image partitioning

机译:通过步态能量图像分区提高步态识别

获取原文
获取原文并翻译 | 示例

摘要

Recently, human gait pattern has turned into an essential biometric feature to recognize an individual remotely. Gait as a feature becomes challenging owing to variation in appearance under different covariate conditions (eg, shoe, surface, haul, viewpoint and attire). The covariates may alter few fragment of gait while other fragment stay unaltered, leading to lower the probability of correct identification. To overcome such variation, an improved gait recognition strategy is proposed in this article by gait energy image partitioning and selection processing. Our method involves pre-processing of raw video for silhouette extraction, gait cycle detection, segmentation into different regions, and histogram of gradients feature extraction from selected segments. In this way, the specific features across complete gait cycles are extracted precisely. Finally, recognition is done by using K-NN. The proposed strategy has been assessed using the CASIA B gait database. Our outcomes shows a particular proposed strategy accomplishes high recognition rate and outperforms the advanced gait recognition mechanism.
机译:最近,人类步态模式已成为一个必不可少的生物识别功能,以便远程识别个人。由于在不同的协变化条件下的外观变化(例如,鞋,表面,运输,观点和服装),步态变得挑战。协变量可以改变几个步态片段,而其他片段保持不变,导致较低识别的概率。为了克服这种变化,通过步态能量图像分区和选择处理在本文中提出了一种改进的步态识别策略。我们的方法涉及预处理用于轮廓提取的原始视频,步态循环检测,分段为不同区域,以及从所选段的梯度特征提取的直方图。以这种方式,精确提取完整步态周期的具体特征。最后,通过使用K-NN来完成识别。拟议的策略已经使用Casia B步态数据库进行了评估。我们的成果显示了特定的拟议战略,实现了高度识别率和优于先进的步态识别机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号