首页> 外文期刊>Computational Intelligence >Improved fuzzy weighted-iterative association rule based ontology postprocessing in data mining for query recommendation applications
【24h】

Improved fuzzy weighted-iterative association rule based ontology postprocessing in data mining for query recommendation applications

机译:基于模糊加权迭代关联规则的查询推荐应用中的数据挖掘后的基于结构基于结构的本体

获取原文
获取原文并翻译 | 示例

摘要

AbstractThe usage of association rules is playing a vital role in the field of knowledge data discovery. Numerous rules have to be processed and plot based on the ranges on the schema. The step in this process depends on the user's queries. Previously, several projects have been proposed to reduce work and improve filtration processes. However, they have some limitations in preprocessing time and filtration rate. In this article, an improved fuzzy weighted‐iterative concept is introduced to overcome the limitation based on the user request and visualization of discovering rules. The initial step includes the mix of client learning with posthandling to use the semantics. The above advance was trailed by surrounding rule schemas to fulfill and anticipate unpredictable guidelines dependent on client desires. Preparing the above developments can be imagined by the use of yet another clever method of study. Standards on guidelines are recognized by the average learning professionals.
机译:摘要,关联规则的使用在知识数据发现领域中发挥着重要作用。必须基于模式上的范围处理众多规则和绘图。此过程中的步骤取决于用户的查询。此前,已经提出了几个项目来减少工作并改善过滤过程。然而,它们在预处理时间和过滤速率方面具有一些局限性。在本文中,引入了一种改进的模糊加权迭代概念来克服基于用户请求的限制和发现规则的可视化。初始步骤包括使用POSThandling来使用语义的客户学习的混合。上述预先通过周围的规则模式落后,以实现和预测依赖客户欲望的不可预测的指导方针。准备上述发展可以通过使用又一个聪明的研究方法来想象。指南标准由平均学习专业人员认可。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号