首页> 外文期刊>Computational Intelligence >Credit score classification using spiking extreme learning machine
【24h】

Credit score classification using spiking extreme learning machine

机译:使用Spiking Extreme Learning Machine的信用评分分类

获取原文
获取原文并翻译 | 示例

摘要

AbstractCredit score classification is a prominent research problem in the banking or financial industry, and its predictive performance is responsible for the profitability of financial industry. This paper addresses how Spiking Extreme Learning Machine (SELM) can be effectively used for credit score classification. A novel spike‐generating function is proposed in Leaky Nonlinear Integrate and Fire Model (LNIF). Its interspike period is computed and utilized in the extreme learning machine (ELM) for credit score classification. The proposed model is named as SELM and is validated on five real‐world credit scoring datasets namely: Australian, German‐categorical, German‐numerical, Japanese, and Bankruptcy. Further, results obtained by SELM are compared with back propagation, probabilistic neural network, ELM, voting‐based Q‐generalized extreme learning machine, Radial basis neural network and ELM with some existing spiking neuron models in terms of classification accuracy, Area under curve (AUC), H‐measure and computational time. From the experimental results, it has been noticed that improvement in accuracy and execution time for the proposed SELM is highly statistically important for all aforementioned credit scoring datasets. Thus, integrating a biological spiking function with ELM makes it more efficient for categorization.
机译:AbstractCredit得分分类是银行或金融业中突出的研究问题,其预测性能对金融业的盈利能力负责。本文解决了尖刺的极端学习机(SELM)可以有效地用于信用评分分类。在泄漏的非线性集成和火模型(LNIF)中提出了一种新型尖峰产生功能。它的间隙时段被计算并在极限学习机(ELM)中用于信用评分分类。拟议的型号被命名为SELM,并在五个现实世界信用评分数据集上验证:澳大利亚,德国分类,德语 - 数值,日语和破产。此外,通过SELM获得的结果与后传播,概率神经网络,榆树,基于投票的Q广义极端学习机,径向基神经网络和ELM,在曲线下的分类精度方面存在一些现有的尖峰神经元模型( AUC),H措施和计算时间。从实验结果来看,已经注意到,对于所有上述所有信用评分数据集,所提出的Selm的准确性和执行时间的提高是非常重要的。因此,与ELM集成生物尖峰功能使其更有效地对分类。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号