首页> 外文期刊>Computational Intelligence >PREFERENCE-BASED CONSTRAINED OPTIMIZATION WITH CP-NETS
【24h】

PREFERENCE-BASED CONSTRAINED OPTIMIZATION WITH CP-NETS

机译:CP-NET的基于偏好的约束优化

获取原文
获取原文并翻译 | 示例

摘要

Many artificial intelligence (AI) tasks, such as product configuration, decision support, and the construction of autonomous agents, involve a process of constrained optimization, that is, optimization of behavior or choices subject to given constraints. In this paper we present an approach for constrained optimization based on a set of hard constraints and a preference ordering represented using a CP-network―a graphical model for representing qualitative preference information. This approach offers both pragmatic and computational advantages. First, it provides a convenient and intuitive tool for specifying the problem, and in particular, the decision maker's preferences. Second, it admits an algorithm for finding the most preferred feasible (Pareto-optimal) outcomes that has the following anytime property: the set of preferred feasible outcomes are enumerated without backtracking. In particular, the first feasible solution generated by this algorithm is Pareto optimal.
机译:许多人工智能(AI)任务,例如产品配置,决策支持和自治代理的构建,都涉及受约束的优化过程,即行为或选择受给定约束的优化。在本文中,我们提出了一种基于硬约束和使用CP网络表示的偏好排序的约束优化方法,CP网络是一种表示定性偏好信息的图形模型。这种方法提供了实用和计算上的优势。首先,它提供了一种方便直观的工具来指定问题,尤其是决策者的偏好。其次,它接受了一种算法,该算法可找到具有以下随时性的最优选可行(帕累托最优)结果:枚举一组优选可行结果而无需回溯。特别地,该算法生成的第一个可行解是帕累托最优。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号