首页> 外文期刊>Computational Intelligence >CLUSTERING TECHNIQUES AND DISCRETE PARTICLE SWARM OPTIMIZATION ALGORITHM FOR MULTI-DOCUMENT SUMMARIZATION
【24h】

CLUSTERING TECHNIQUES AND DISCRETE PARTICLE SWARM OPTIMIZATION ALGORITHM FOR MULTI-DOCUMENT SUMMARIZATION

机译:多文档摘要的聚类技术和离散粒子群优化算法

获取原文
获取原文并翻译 | 示例

摘要

Multi-document summarization is a process of automatic creation of a compressed version of a given collection of documents that provides useful information to users. In this article we propose a generic multi-document summarization method based on sentence clustering. We introduce five clustering methods, which optimize various aspects of intra-cluster similarity, inter-cluster dissimilarity and their combinations. To solve the clustering problem a modification of discrete particle swarm optimization algorithm has been proposed. The experimental results on open benchmark data sets from DUC2005 and DUC2007 show that our method significantly outperforms the baseline methods for multi-document summarization.
机译:多文档摘要是自动创建给定文档集合的压缩版本的过程,该压缩版本可为用户提供有用的信息。在本文中,我们提出了一种基于句子聚类的通用多文档摘要方法。我们介绍了五种聚类方法,它们优化了集群内相似性,集群间异同及其组合的各个方面。为了解决聚类问题,提出了一种改进的离散粒子群算法。在来自DUC2005和DUC2007的开放基准数据集上的实验结果表明,我们的方法明显优于多文档摘要的基线方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号