首页> 外文期刊>Computational Intelligence >EFFICIENT PERSONALIZATION OF E-LEARNING ACTIVITIES USING A MULTI-DEVICE DECENTRALIZED RECOMMENDER SYSTEM
【24h】

EFFICIENT PERSONALIZATION OF E-LEARNING ACTIVITIES USING A MULTI-DEVICE DECENTRALIZED RECOMMENDER SYSTEM

机译:使用多设备分散推荐系统有效地个性化电子学习活动

获取原文
获取原文并翻译 | 示例

摘要

Personalization is becoming a key issue in designing effective e-learning systems and, in this context, a promising solution is represented by software agents. Usually, these systems provide the student with a student agent that interacts with a site agent associated with each e-learning site. However, in presence of a large number of students and of e-learning sites, the tasks of the agents are often onerous, even more if the student agents run on devices with limited resources. To face this problem, we propose a new multiagent learning system, called ISABEL. Our system provides each student, that are using a specific device, with a device agent able to autonomously monitor the student's behavior when accessing e-learning Web sites. Each site is associated, in its turn, with a teacher agent. When a student visits an e-learning site, the teacher agent collaborates with some tutor agents associated with the student, to provide him with useful recommendations. We present both theoretical and experimental results to show that this distributed approach introduces significant advantages in quality and efficiency of the recommendation activity with respect to the performances of other past recommenders.
机译:个性化已成为设计有效的电子学习系统的关键问题,在这种情况下,软件代理代表了一种有前途的解决方案。通常,这些系统为学生提供一个学生代理,该代理与与每个电子学习站点相关的站点代理进行交互。但是,在有大量学生和电子学习站点的情况下,代理的任务通常很繁重,如果学生代理在资源有限的设备上运行,则任务甚至更多。为了解决这个问题,我们提出了一种新的多代理学习系统,称为ISABEL。我们的系统为使用特定设备的每个学生提供一个设备代理,该代理可以在访问电子学习网站时自动监视学生的行为。每个站点又与一个教师代理相关联。当学生访问电子学习站点时,教师代理会与与该学生关联的一些导师代理合作,以向他提供有用的建议。我们同时提供理论和实验结果,以表明相对于其他过去推荐者的表现,这种分布式方法在推荐活动的质量和效率方面引入了显着优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号