首页> 外文期刊>Computational Intelligence >SYNTACTIC SIMPLIFICATION AND SEMANTIC ENRICHMENT-TRIMMING DEPENDENCY GRAPHS FOR EVENT EXTRACTION
【24h】

SYNTACTIC SIMPLIFICATION AND SEMANTIC ENRICHMENT-TRIMMING DEPENDENCY GRAPHS FOR EVENT EXTRACTION

机译:事件提取的句法简化和语义丰富化修剪依赖关系图

获取原文
获取原文并翻译 | 示例

摘要

In our approach to event extraction, dependency graphs constitute the fundamental data structure for knowledge capture. Two types of trimming operations pave the way to more effective relation extraction. First, we simplify the syntactic representation structures resulting from parsing by pruning informationally irrelevant lexical material from dependency graphs. Second, we enrich informationally relevant lexical material in the simplified dependency graphs with additional semantic meta data at several layers of conceptual granularity. These two aggregation operations on linguistic representation structures are intended to avoid overfitting of machine learning-based classifiers which we use for event extraction (besides manually curated dictionaries). Given this methodological framework, the corresponding JReX system developed by the JULlELab Team from Friedrich-Schiller-Universitat Jena (Germany) scored on 2nd rank among 24 competing teams for Task 1 in the "BioNLP'09 Shared Task on Event Extraction," with 45.8% recall, 47.5% precision and 46.7% Fl-score on all 3,182 events. In more recent experiments, based on slight modifications of JReX and using the same data sets, we were able to achieve 45.9% recall, 57.7% precision, and 51.1% Fl-score.
机译:在我们的事件提取方法中,依赖图构成了知识捕获的基本数据结构。两种修剪操作为更有效的关系提取铺平了道路。首先,我们通过从依赖关系图中修剪信息无关的词法材料,简化了语法分析产生的语法表示结构。第二,我们在概念性粒度的多个层次上,通过附加的语义元数据,在简化的依赖关系图中丰富了信息相关的词汇材料。这两种对语言表示结构的聚合操作旨在避免过度拟合我们用于事件提取的基于机器学习的分类器(除手动编写的字典外)。在这种方法框架下,由耶拿(Jena)的JULlELab团队开发的相应JReX系统在“ BioNLP'09事件提取共享任务”的任务1的24个竞争团队中排名第二,得分为45.8。在所有3,182个项目中,召回率(%),47.5%的准确性和46.7%的Fl得分。在最近的实验中,基于对JReX的轻微修改并使用相同的数据集,我们能够实现45.9%的查全率,57.7%的准确度和51.1%的Fl得分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号