首页> 外文期刊>Computational Intelligence >New Recommender Framework: Combining Semantic Similarity Fusion and Bicluster Collaborative Filtering
【24h】

New Recommender Framework: Combining Semantic Similarity Fusion and Bicluster Collaborative Filtering

机译:新的推荐器框架:语义相似融合与Bicluster协同过滤相结合

获取原文
获取原文并翻译 | 示例

摘要

Collaborative filtering (CF) systems help address information overload, by using the preferences of users in a community to make personal recommendations for other users. The widespread use of these systems has exposed some well-known limitations, such as sparsity, scalability, and cold-start, which can lead to poor recommendations. During the last years, a great number of works have focused on the improvement of CF, but they do not solve all its problems efficiently. In this article, we present a new approach that applies semantic similarity fusion as well as biclustering to alleviate the aforementioned problems. The experimental results verify the effectiveness and efficiency of our approach over the benchmark CF methods.
机译:协作过滤(CF)系统通过使用社区中用户的偏好为其他用户提出个人建议,帮助解决信息过载的问题。这些系统的广泛使用暴露了一些众所周知的局限性,例如稀疏性,可伸缩性和冷启动,这可能会导致建议不佳。在过去的几年中,许多工作集中在CF的改进上,但是它们并不能有效地解决所有问题。在本文中,我们提出了一种新方法,该方法应用语义相似性融合以及双聚类来缓解上述问题。实验结果证明了我们的方法优于基准CF方法的有效性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号