首页> 外文期刊>Computational Intelligence >User Activities Outliers Detection; Integration of Statistical and Computational Intelligence Techniques
【24h】

User Activities Outliers Detection; Integration of Statistical and Computational Intelligence Techniques

机译:用户活动异常值检测;统计与计算智能技术的集成

获取原文
获取原文并翻译 | 示例

摘要

In this article, a hybrid technique for user activities outliers detection is introduced. The hybrid technique consists of a two-stage integration of principal component analysis and fuzzy rule-based systems. In the first stage, the Hamming distance is used to measure the differences between different activities. Principal component analysis is then applied to the distance measures to find two indices of Hotelling's T-2 and squared prediction error. In the second stage of the process, the calculated indices are provided as inputs to the fuzzy rule-based systems to model them heuristically. The model is used to identify the outliers and classify them. The proposed system is tested in real home environments, equipped with appropriate sensory devices, to identify outliers in the activities of daily living of the user. Three case studies are reported to demonstrate the effectiveness of the proposed system. The proposed system successfully identifies the outliers in activities distinguishing between the normal and abnormal behavioral patterns.
机译:在本文中,介绍了一种用于用户活动离群值检测的混合技术。混合技术包括主成分分析和基于模糊规则的系统的两阶段集成。在第一阶段,汉明距离用于测量不同活动之间的差异。然后将主成分分析应用于距离测度,以找到霍特林T-2和预测误差平方的两个指标。在该过程的第二阶段,将计算出的索引作为输入提供给基于模糊规则的系统,以对它们进行启发式建模。该模型用于识别异常值并将其分类。所建议的系统在配备有适当传感设备的实际家庭环境中进行测试,以识别用户日常生活活动中的异常值。报告了三个案例研究,以证明该系统的有效性。所提出的系统成功地识别出活动中的异常值,以区分正常行为模式和异常行为模式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号