首页> 外文期刊>Computational Intelligence >EVOLUTIONARY ALGORITHM-BASED RADIAL BASIS FUNCTION NEURAL NETWORK TRAINING FOR INDUSTRIAL PERSONAL COMPUTER SALES FORECASTING
【24h】

EVOLUTIONARY ALGORITHM-BASED RADIAL BASIS FUNCTION NEURAL NETWORK TRAINING FOR INDUSTRIAL PERSONAL COMPUTER SALES FORECASTING

机译:基于进化算法的径向基函数神经网络训练用于个人计算机销售预测

获取原文
获取原文并翻译 | 示例

摘要

Forecasting is one of the crucial factors in applications because it ensures the effective allocation of capacity and proper amount of inventory. Because Box-Jenkins models using linear forecasting have their constraint to predict complexity in the real world, other nonlinear approaches are developed to conquer the challenge of nonlinear forecasting. With the same goal, we are proposing a hybrid of genetic algorithm and artificial immune system (HGAI) algorithm with radial basis function neural network learning for function approximation and further applying it to conduct an industrial personal computer sales forecasting exercise. In addition, five well-known benchmark problems were used to evaluate the results in the experiment, and the newly proposed HGAI algorithm has returned better results than the Box-Jenkins models and other algorithms.
机译:预测是应用程序中的关键因素之一,因为它可以确保有效分配容量和适当数量的库存。由于使用线性预测的Box-Jenkins模型具有约束条件来预测现实世界中的复杂性,因此开发了其他非线性方法来克服非线性预测的挑战。出于相同的目标,我们提出了一种遗传算法和人工免疫系统(HGAI)算法的混合方法,并采用径向基函数神经网络学习进行函数逼近,并将其进一步应用于工业个人计算机的销售预测活动。此外,在实验中使用了五个著名的基准问题来评估结果,新提出的HGAI算法比Box-Jenkins模型和其他算法具有更好的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号