...
首页> 外文期刊>Composite Structures >On functionally graded composite structures for crashworthiness
【24h】

On functionally graded composite structures for crashworthiness

机译:在功能分级的复合结构上具有耐撞性

获取原文
获取原文并翻译 | 示例

摘要

The foam-filled thin-walled composite structures have proven an ideal energy absorber in automotive engineering for its extraordinary energy absorption ability and lightweight features. Unlike existing uniform foam and thickness (UFT) structure, this paper introduces functionally graded foam (FGF) to fill into functionally graded thickness (FGT) thin-walled structure, named as double functionally graded (DFG) tube, where different configurations of foam and wall thickness gradients are taken into account. To systematically explore the crashworthiness of DFG structures, first, experimental results were performed to validate finite element (FE) models. Second, a comparison of crashworthiness was carried out for (1) four different DFG structures, (2) four single functionally-graded (SFG) structures and (3) one traditional UFT structure. The results showed that the DFG structures have better energy absorption capacity than the SFG and UFT structures, especially with a convex gradient configuration. In addition, the specific energy absorption (SEA) values of these four DFG structures are fairly close to each other, while their loading responses highly depend on the combination of gradients. Of these DFG structures, Ascending Ascending configuration exhibits best overall crashworthiness characteristics. Finally, parametric studies were performed and the results indicated that widening the ranges of foam density and tube wall thickness can improve the energy absorption of the Ascending Ascending DFG structures without increasing the initial peak load. Therefore, the DFG structure of Ascending Ascending gradient is recommended for a potential absorber. (C) 2015 Elsevier Ltd. All rights reserved.
机译:泡沫填充的薄壁复合结构以其非凡的能量吸收能力和轻巧的特性,已被证明是汽车工程中的理想能量吸收器。与现有的均匀泡沫和厚度(UFT)结构不同,本文引入功能梯度泡沫(FGF)填充到功能梯度(FGT)薄壁结构中,该结构称为双功能梯度(DFG)管,其中泡沫和泡沫的配置不同考虑到壁厚梯度。为了系统地研究DFG结构的耐撞性,首先,进行了实验结果以验证有限元(FE)模型。其次,对(1)四种不同的DFG结构,(2)四种单功能梯度(SFG)结构和(3)一种传统的UFT结构进行了耐撞性比较。结果表明,DFG结构比SFG和UFT结构具有更好的能量吸收能力,特别是具有凸梯度结构。此外,这四个DFG结构的比能量吸收(SEA)值彼此非常接近,而它们的负载响应高度依赖于梯度的组合。在这些DFG结构中,升序升序配置具有最佳的总体耐撞性。最后,进行了参数研究,结果表明,扩大泡沫密度和管壁厚度的范围可以改善Ascending Ascending DFG结构的能量吸收,而不会增加初始峰值载荷。因此,对于电势吸收器,建议使用DFG结构的Ascending Ascending梯度。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号