首页> 外文期刊>Composite Structures >Nonlinear buckling analysis of variable stiffness composite plates based on the reduced order model
【24h】

Nonlinear buckling analysis of variable stiffness composite plates based on the reduced order model

机译:基于降阶模型的变刚度复合材料板非线性屈曲分析

获取原文
获取原文并翻译 | 示例
           

摘要

The variable-stiffness fiber composite plates which have an enhanced design flexibility, largely rely on laminate optimizations to maximize the buckling performance. The corresponding computational efficiency becomes a key issue, in particular when the nonlinear structural behavior is considered. The finite element method based on a full nonlinear analysis is a standard technique for nonlinear structural analysis, however the high computational complexities generated from both the incremental-iterative procedure and the very refined mesh needed for the discrete modeling of curved fibers, are still a decisive cost factor on modern computers. In this work, the Koiter-Newton method is further extended to nonlinear buckling analysis, including the pre and post buckling stage, of variable stiffness composite plates. A four-node quadrilateral element based on the classical laminated plate theory is developed in framework of the von Karman kinematics, for the finite element implementation of the proposed asymptotic method. The reduced order model, with or without imperfections, is constructed using the improved Koiter's asymptotic expansion, for both the symmetrical and unsymmetrical laminates. The nonlinear response curve of loaded structure can be traced automatically, using the nonlinear predictor and corrections both generated from the reduced order model. This leads to a fairly large step size in the path-tracing process, compared to that for the classical Newton method. The reduced order model largely reduces the computational burden produced by the high-density FE mesh for the varied fiber path. Numerical results indicate the overall high quality and efficiency of the proposed method.
机译:具有增强的设计灵活性的可变刚度纤维复合材料板在很大程度上依赖于层压材料的优化来最大化屈曲性能。相应的计算效率成为关键问题,尤其是在考虑非线性结构行为时。基于完全非线性分析的有限元方法是非线性结构分析的标准技术,但是,由增量迭代过程和曲面纤维离散建模所需的非常精细的网格生成的高计算复杂度仍然是决定性的现代计算机上的成本因素。在这项工作中,将Koiter-Newton方法进一步扩展到可变刚度复合材料板的非线性屈曲分析,包括屈曲之前和之后的阶段。在冯卡曼运动学的框架下,开发了一种基于经典叠层板理论的四节点四边形单元,以实现所提出的渐近方法的有限元实现。使用改进的Koiter渐近展开来构造对称或不对称层压板的有无缺陷的降阶模型。使用降阶模型生成的非线性预测因子和校正值,可以自动跟踪加载结构的非线性响应曲线。与经典的牛顿法相比,这在路径跟踪过程中导致了相当大的步长。降阶模型大大降低了高密度FE网格对于变化的光纤路径所产生的计算负担。数值结果表明了该方法的整体质量和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号