首页> 外文期刊>Communications in Statistics >Mixture Distributions Based Methods of Calibration for the Empirical Log-Likelihood Ratio
【24h】

Mixture Distributions Based Methods of Calibration for the Empirical Log-Likelihood Ratio

机译:基于混合物分布的经验对数似然比的标定方法

获取原文
获取原文并翻译 | 示例

摘要

Empirical likelihood ratio confidence regions based on the chi-square calibration suffer from an undercoverage problem in that their actual coverage levels tend to be lower than the nominal levels. The finite sample distribution of the empirical log-likelihood ratio is recognized to have a mixture structure with a continuous component on [0, +∞) and a point mass at +∞. The undercoverage problem of the Chi-square calibration is partly due to its use of the continuous Chi-square distribution to approximate the mixture distribution of the empirical log-likelihood ratio. In this article, we propose two new methods of calibration which will take advantage of the mixture structure; we construct two new mixture distributions by using the F and chi-square distributions and use these to approximate the mixture distributions of the empirical log-likelihood ratio. The new methods of calibration are asymptotically equivalent to the chi-square calibration. But the new methods, in particular the F mixture based method, can be substantially more accurate than the chi-square calibration for small and moderately large sample sizes. The new methods are also as easy to use as the chi-square calibration.
机译:基于卡方校准的经验似然比置信区域存在覆盖不足的问题,因为它们的实际覆盖范围往往低于标称级别。经验对数似然比的有限样本分布被认为是一种混合结构,其连续分量为[0,+∞),点质量为+∞。卡方校准的覆盖不足问题部分是由于使用连续卡方分布来近似经验对数似然比的混合分布。在本文中,我们提出了两种利用混合物结构的校准方法。我们通过使用F和卡方分布构造两个新的混合物分布,并使用它们来近似经验对数似然比的混合物分布。新的校准方法渐近等效于卡方校准。但是新方法,特别是基于F混合的方法,对于小样本和中等大小的样本,其精度可能远比卡方校准准确。新方法也像卡方校准一样易于使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号