首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Approximate solutions and their stability of a broadband piezoelectric energy harvester with a tunable potential function
【24h】

Approximate solutions and their stability of a broadband piezoelectric energy harvester with a tunable potential function

机译:具有可调势函数的宽带压电能量采集器的近似解及其稳定性

获取原文
获取原文并翻译 | 示例

摘要

A broadband piezoelectric energy harvester (PEH) with a mechanically tunable potential function is modeled and analytically analyzed. The harvester consisting of a beam and a pre-compression spring at one end can be tuned to both monostable and bistable configurations. The axial motion of the beam resulting from the transverse vibration and spring load induces two coupled higher-order terms of displacement, velocity and acceleration into the governing equations. This significantly complicates the theoretical analysis, especially the stability analysis of solutions. Harmonic balance method is employed to investigate the dynamic characteristics of the nonlinear energy harvester. An effective approach is developed to solve the entries of the Jacobian matrix for determining the stability of analytical solutions. This approach offers a criterion for solution stability analysis of congeneric nonlinear systems with coupled higher-order terms. The energy harvesting performance and the nonlinear dynamic characteristics of the proposed PEH are explored for various base excitation levels, electrical resistive loads and pre-deformations of the spring. The approximate analytical solutions are validated by numerical simulations. Results demonstrate that the energy harvesting performance of the proposed PEH could be effectively tuned by the pre-deformation of the spring. The proposed PEH could harvest vibration energy in a wide frequency range of 0-91 Hz at the excitation level of 0.5 g. Published by Elsevier B.V.
机译:对具有机械可调势函数的宽带压电能量采集器(PEH)进行建模和分析。收割机的一端由横梁和预压缩弹簧组成,可以同时调整为单稳态和双稳态配置。由横向振动和弹簧载荷引起的梁的轴向运动将两个关于位移,速度和加速度的耦合的高阶项引入到控制方程中。这大大增加了理论分析的难度,尤其是溶液的稳定性分析。采用谐波平衡法研究了非线性能量采集器的动态特性。开发了一种有效的方法来解决雅可比矩阵的项,以确定解析解的稳定性。该方法为耦合高阶项的同类非线性系统的解稳定性分析提供了标准。针对各种基本激励水平,电阻负载和弹簧的预变形,探索了所提出的PEH的能量收集性能和非线性动力学特性。通过数值模拟验证了近似解析解。结果表明,所提出的PEH的能量收集性能可以通过弹簧的预变形有效地调整。提出的PEH可以在0.5 g的激发水平下在0-91 Hz的宽频率范围内收集振动能量。由Elsevier B.V.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号