首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Delay-dependent robust exponential state estimation of Markovian jumping fuzzy Hopfield neural networks with mixed random time-varying delays
【24h】

Delay-dependent robust exponential state estimation of Markovian jumping fuzzy Hopfield neural networks with mixed random time-varying delays

机译:混合随机时变时滞的Markovian跳跃模糊Hopfield神经网络的时滞相关鲁棒指数状态估计

获取原文
获取原文并翻译 | 示例

摘要

This paper investigates delay-dependent robust exponential state estimation of Markovian jumping fuzzy neural networks with mixed random time-varying delay. In this paper, the Takagi-Sugeno (T-S) fuzzy model representation is extended to the robust exponential state estimation of Markovian jumping Hopfield neural networks with mixed random time-varying delays. Moreover probabilistic delay satisfies a certain probability-distribution. By introducing a stochastic variable with a Bernoulli distribution, the neural networks with random time delays is transformed into one with deterministic delays and stochastic parameters. The main purpose is to estimate the neuron states, through available output measurements such that for all admissible time delays, the dynamics of the estimation error is globally exponentially stable in the mean square. Based on the Lyapunov-Krasov-skii functional and stochastic analysis approach, several delay-dependent robust state estimators for such T-S fuzzy Markovian jumping Hopfield neural networks can be achieved by solving a linear matrix inequality (LMI), which can be easily facilitated by using some standard numerical packages. The unknown gain matrix is determined by solving a delay-dependent LMI. Finally some numerical examples are provided to demonstrate the effectiveness of the proposed method.
机译:研究了具有混合随机时变时滞的马尔可夫跳跃模糊神经网络的时滞相关鲁棒指数状态估计。本文将Takagi-Sugeno(T-S)模糊模型表示扩展到具有混合随机时变时滞的Markovian跳跃Hopfield神经网络的鲁棒指数状态估计。此外,概率延迟满足一定的概率分布。通过引入具有伯努利分布的随机变量,将具有随机时间延迟的神经网络转换为具有确定性延迟和随机参数的神经网络。主要目的是通过可用的输出测量值来估计神经元状态,以便对于所有允许的时间延迟,估计误差的动态范围在均方根中呈指数稳定。基于Lyapunov-Krasov-skii函数和随机分析方法,可以通过求解线性矩阵不等式(LMI)来获得针对此类TS模糊Markovian跳跃Hopfield神经网络的依赖于延迟的鲁棒状态估计量,通过使用LMI可以很容易地实现一些标准的数值软件包。通过求解依赖于延迟的LMI来确定未知增益矩阵。最后,通过数值算例验证了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号