首页> 外文期刊>Combustion Science and Technology >A COMPARATIVE STUDY OF TURBULENCE MODELLING IN HYDROGEN-AIR NONPREMIXED TURBULENT FLAMES
【24h】

A COMPARATIVE STUDY OF TURBULENCE MODELLING IN HYDROGEN-AIR NONPREMIXED TURBULENT FLAMES

机译:氢-空气非混合湍流火焰湍流模型的比较研究

获取原文
获取原文并翻译 | 示例
       

摘要

Hydrogen-hydrocarbon blend flames have recently received increased attention as alternative fuels for terrestrial and aerospace power generation applications. The combustion modelling of these composite fuels flames is complex. Turbulence modelling as well is difficult because in the near field region of the jet exit, high density gradients at high inlet velocity cause difficulties. In order to correctly predict turbulent flames if blend fuels, it is necessary to validate the model's capability for hydrogen flames and hydrocarbon flames separately. In this study, pure hydrogen-air turbulent nonpre-mixed flames are numerically investigated. The configuration used is a co-flowing axisymetric turbulent non-premixed hydrogen flame, which is experimentally investigated by Barlow and Carter (1994) and Flury and Schlatter (1997). The model uses two turbulence closures that are the k-ε model and the Reynolds Stress Model (RSM) coupled with the steady strained laminar flamelet model. The performance of the k-ε and the RSM models are particularly discussed in the locations close to the nozzle exit. The results obtained demonstrate that the strained steady laminar flamelet approach based on the k-ε and the Reynolds stress turbulence models is, in general, capable of predicting this hydrogen-air flame at atmospheric pressure. Comparisons with measurements indicate that the predictions are sensitive to turbulence modelling and differential diffusion in the near-field region whereas the far-field region is influenced only by turbulence modelling. The RSM model gives better results than the k-ε model predictions close to the nozzle exit due to its corresponding turbulence parameters that are modelled more accurately. However, because of unity Lewis number assumption in the flamelet library generation, air entrainment is found to be not well predicted by the two turbulence models. Downstream, the k-ε model performs better and the predictions are very close to experimental data.
机译:氢-碳氢化合物混合火焰作为陆上和航空发电应用的替代燃料近来受到越来越多的关注。这些复合燃料火焰的燃烧模型很复杂。湍流建模也是困难的,因为在射流出口的近场区域中,高入口速度下的高密度梯度会造成困难。为了正确预测混合燃料是否产生湍流火焰,有必要分别验证模型对氢火焰和碳氢化合物火焰的能力。在这项研究中,对纯氢-空气湍流非预混火焰进行了数值研究。使用的配置是同流轴心湍流非预混合氢火焰,Barlow和Carter(1994)以及Flury和Schlatter(1997)对其进行了实验研究。该模型使用两个湍流闭合,即k-ε模型和雷诺应力模型(RSM)以及稳态应变层流小火焰模型。特别是在靠近喷嘴出口的位置讨论了k-ε和RSM模型的性能。获得的结果表明,基于k-ε和雷诺应力湍流模型的应变稳定层流小火焰方法通常能够预测大气压下的氢空气火焰。与测量值的比较表明,预测对湍流建模和近场区域中的差分扩散很敏感,而远场区域仅受湍流建模的影响。 RSM模型比靠近喷嘴出口的k-ε模型预测提供了更好的结果,这是因为其相应的湍流参数得到了更精确的建模。但是,由于在小火焰库生成中统一的Lewis数假设,两个湍流模型都不能很好地预测空气夹带。在下游,k-ε模型表现更好,并且预测非常接近实验数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号