首页> 外文期刊>Combustion Science and Technology >THE EFFECT OF PARTICLE SIZE AND AMBIENT OXIDIZER CONCENTRATION ON METAL PARTICLE IGNITION
【24h】

THE EFFECT OF PARTICLE SIZE AND AMBIENT OXIDIZER CONCENTRATION ON METAL PARTICLE IGNITION

机译:颗粒尺寸和环境氧化剂浓度对金属颗粒着火的影响

获取原文
获取原文并翻译 | 示例
       

摘要

Ignition and combustion of metal particles are strongly influenced by the interference of a persistent layer of condensed metal oxide covering the metal fuel, thereby shielding it from the gaseous oxidizer. The existence of this surface cover sets metals apart from other condensed fuels for which ignition can be described by the theory of surface inflammation, as formulated by Frank-Kamenetzkii. The paper investigates the stability of the stationary oxide layer, which is assumed to be liquid so that the equations of a model can be used, as was published earlier. It is shown that global ignition, which is defined to result from globally uniform removal of the oxide layer, occurs when the control parameters attain critical values. In the present case, control parameters are the ambient temperature T_∞, the ambient oxidizer concentration C_g, and the particle radius R. The ignition model is derived in the form of an expansion in a small parameter ε = h_0/R, where h_0 is a reference thickness of the oxide layer. In the first order of approximation in ε, the critical ambient temperature and the critical particle temperature are shown to be independent of R, while depending on the oxidizer concentration, whereas the critical oxide layer thickness turns out to be proportional to R. A comparison with published experimental data on ignition (mostly for boron, but some for aluminum also) is used to support these predictions of the model. Global ignition is a special case of the more general concept of local ignition, which involves the appearance and subsequent widening of punctures and ruptures in the oxide layer. It is shown to be strongly influenced by the oxidizer content in the ambient atmosphere. In particular, a reduction in oxidizer concentration is found to greatly enhance the tendency for ruptures and punctures to spread.
机译:金属颗粒的点火和燃烧受到覆盖金属燃料的持久性冷凝金属氧化物层的干扰的强烈影响,从而使其免受气态氧化剂的影响。该表面覆盖层的存在使金属与其他冷凝燃料区分开来,而这些冷凝燃料可以通过由Frank-Kamenetzkii提出的表面发炎理论来描述。本文研究了固定氧化物层的稳定性,假定该氧化物层是液态的,因此可以使用模型的方程式,如先前发布的那样。结果表明,当控制参数达到临界值时,就会发生整体点火,这是由于整体均匀地去除了氧化层而引起的。在当前情况下,控制参数为环境温度T_∞,环境氧化剂浓度C_g和粒子半径R。点火模型以小参数ε= h_0 / R的展开形式导出,其中h_0为氧化物层的参考厚度。在ε的一阶近似中,临界环境温度和临界粒子温度显示为与R无关,而取决于氧化剂的浓度,而临界氧化物层的厚度却与R成正比。已发表的有关点火的实验数据(主要是硼,但也有一些铝)也用于支持模型的这些预测。整体点火是局部点火的更一般概念的特例,局部点火涉及在氧化层中出现并随后扩大穿孔和破裂。已证明它受周围环境中氧化剂含量的强烈影响。特别地,发现氧化剂浓度的降低极大地增强了破裂和穿孔扩散的趋势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号