首页> 外文期刊>Combustion and Flame >Gas-phase saturation and evaporative cooling effects during wet compression of a fuel aerosol under RCM conditions
【24h】

Gas-phase saturation and evaporative cooling effects during wet compression of a fuel aerosol under RCM conditions

机译:在RCM条件下湿法压缩燃料气溶胶期间的气相饱和和蒸发冷却效应

获取原文
获取原文并翻译 | 示例
       

摘要

Wet compression of a fuel aerosol has been proposed as a means of creating gas-phase mixtures of involatile diesel-representative fuels and oxidizer + diluent gases for rapid compression machine (RCM) experiments. The use of high concentration aerosols (e.g.,~0.1 mL_(fuel)/L_(gas), ~1 × 10~9 droplets/L_(gas) for stoichiometric fuel loading at ambient conditions) can result in droplet-droplet interactions which lead to significant gas-phase fuel saturation and evaporative cooling during the volumetric compression process. In addition, localized stratification (i.e., on the droplet scale) of the fuel vapor and of temperature can lead to non-homogeneous reaction and heat release processes - features which could prevent adequate segregation of the underlying chemical kinetic rates from rates of physical transport. These characteristics are dependent on many factors including physical parameters such as overall fuel loading and initial droplet size relative to the compression rate, as well as fuel and diluent properties such as the boiling curve, vapor-ization enthalpy, heat capacity, and mass and thermal diffusivities. This study investigates the physical issues, especially fuel saturation and evaporative cooling effects, using a spherically-symmetric, single-droplet wet compression model. n-Dodecane is used as the fuel with the gas containing 21% O_2 and 79% N_2. An overall compression time and compression ratio of 15.3 ms and 13.4 are used, respectively. It is found that smaller droplets (d_0~2-3 μm) are more affected by 'far-field' saturation and cooling effects, while larger droplets (d_0~14 μm) result in greater localized stratification of the gas-phase due to the larger diffusion distances for heat and mass transport. Vaporization of larger droplets is more affected by the volumetric compression process since evaporation requires more time to be completed even at the same overall fuel loading. All of the cases explored here yield greater compositional stratification than thermal stratification due to the high Lewis numbers of the fuel-air mixtures (Le_g ~3.8).
机译:已经提出将燃料气雾剂进行湿式压缩作为一种方法,以创建用于快速压缩机(RCM)实验的不挥发的柴油代表燃料和氧化剂+稀释气体的气相混合物。在环境条件下使用高浓度气溶胶(例如,〜0.1 mL_(燃料)/ L_(气体),〜1×10〜9液滴/ L_(气体)用于化学计量的燃料装载)会导致液滴-液滴相互作用,从而导致在体积压缩过程中会显着增加气相燃料饱和度和蒸发冷却。另外,燃料蒸气和温度的局部分层(即,在液滴尺度上)可导致不均匀的反应和放热过程,这些特征可防止潜在的化学动力学速率与物理传输速率充分隔离。这些特性取决于许多因素,包括物理参数,例如总体燃料负载和相对于压缩率的初始液滴尺寸,以及燃料和稀释剂特性,例如沸腾曲线,汽化焓,热容量以及质量和热力。扩散性。本研究使用球对称,单液滴湿压缩模型研究了物理问题,尤其是燃料饱和度和蒸发冷却效果。正十二烷用作燃料,气体中含有21%的O_2和79%的N_2。总压缩时间和压缩比分别为15.3 ms和13.4。研究发现,较小的液滴(d_0〜2-3μm)受“远场”饱和和冷却效应的影响更大;而较大的液滴(d_0〜14μm),则由于汽化作用导致气相的局部分层更大。更大的扩散距离,以进行热量和质量传递。体积压缩过程对较大液滴的汽化影响更大,因为即使在相同的总燃料负载下,汽化也需要更多的时间才能完成。由于燃料-空气混合物的Lewis值较高(Le_g〜3.8),因此这里探讨的所有情况都比热分层产生更大的成分分层。

著录项

  • 来源
    《Combustion and Flame》 |2011年第1期|p.57-68|共12页
  • 作者单位

    Department of Mechanical Engineering, Marquette University, PO Box 1881, Milwaukee, WI 53201-1881, USA;

    rnEnergy Systems Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439-4815, USA;

    rnHDEP Performance & Emissions, DTNA - Detroit Diesel Corporation, 13400 Outer Dr. West, Detroit, MI 48239, USA;

    rnDepartment of Mechanical and Industrial Engineering, University of Illinois at Chicago, 1030 Engineering Research Facility, 842 W. Taylor Street, Chicago, IL 60607, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    wet compression; droplet evaporation; aerosol RCM; transient model;

    机译:湿压缩液滴蒸发气溶胶RCM;瞬态模型;
  • 入库时间 2022-08-18 00:12:09

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号