首页> 外文期刊>Cloud Computing, IEEE Transactions on >Heterogeneous Job Allocation Scheduler for Hadoop MapReduce Using Dynamic Grouping Integrated Neighboring Search
【24h】

Heterogeneous Job Allocation Scheduler for Hadoop MapReduce Using Dynamic Grouping Integrated Neighboring Search

机译:使用动态分组集成相邻搜索的Hadoop MapReave的异构作业分配调度程序

获取原文
获取原文并翻译 | 示例

摘要

MapReduce is a crucial framework in the cloud computing architecture, and is implemented by Apache Hadoop and other cloud computing platforms. The resources required for executing jobs in a large data center vary according to the job types. In general, there are two types of jobs, CPU-bound and I/O-bound, which require different resources but run simultaneously in the same cluster. The default job scheduling policy of Hadoop is first-come-first-served and therefore, may cause unbalanced resource utilization. Considering various job workloads, numerous job allocation schedulers were proposed in the literature. However, those schedulers encountered the data locality problem or unreasonable job execution performance. This study proposes a job scheduler based on a dynamic grouping integrated neighboring search strategy, which can balance the resource utilization and improve the performance and data locality in heterogeneous computing environments.
机译:MapReduce是云计算架构中的重要框架,由Apache Hadoop和其他云计算平台实现。在大数据中心执行作业所需的资源根据作业类型而有所不同。通常,有两种类型的作业,CPU绑定和I / O绑定,它需要不同的资源,但在同一群集中同时运行。 Hadoop的默认作业调度策略是首先服务,因此可能导致资源利用率不平衡。考虑到各种工作工作负载,文献中提出了众多工作分配调度员。但是,这些调度程序遇到了数据局部问题或不合理的作业执行性能。本研究提出了一种基于动态分组集成相邻搜索策略的作业调度器,其可以平衡资源利用率并提高异构计算环境中的性能和数据局部。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号