首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >Joint Learning of Local and Global Context for Temporal Action Proposal Generation
【24h】

Joint Learning of Local and Global Context for Temporal Action Proposal Generation

机译:临时行动提案生成的地方和全球背景联合学习

获取原文
获取原文并翻译 | 示例

摘要

Temporal action proposal generation is an important yet challenging problem, since temporal proposals with rich action content are indispensable for analysing real-world videos with long duration and high proportion irrelevant content. This problem requires methods not only generating proposals with precise temporal boundaries, but also retrieving proposals to cover ground truth action instances with high recall and high overlap using relatively fewer proposals. To address these difficulties, we introduce an effective and efficient proposal generation method, named Local-Global Network (LGN), by which local and global contexts are jointly learned to generate high quality proposals. Locally, LGN first locates temporal boundaries with high starting and ending probabilities separately, then directly combines these boundaries as proposals. Globally, LGN evaluates the actionness probability of multiple-durations temporal regions simultaneously using temporal convolutional layers and anchor mechanism. Finally, we combine the boundary probabilities of each proposal with actionness probability of matched temporal regions as the confidence score, which is used for retrieving proposals. We conduct experiments on two datasets: ActivityNet-1.3 and THUMOS-14, where LGN outperforms other state-of-the-art methods with both high recall and high temporal precision. Finally, further experiments demonstrate that by combining existing action classifiers, our method significantly improves the state-of-the-art temporal action detection performance.
机译:时间行动提案生成是一个重要而挑战性的问题,因为具有丰富的行动内容的时间提案对于分析具有长期和高比例无关内容的现实世界视频是必不可少的。此问题不仅需要使用精确的时间边界生成提案,而且还需要使用相对较少的提案来检索具有高召回和高重叠的地面真理动作实例的提案。为了解决这些困难,我们引入了一个有效且有效的提案生成方法,名为本地全球网络(LGN),通过该网络(LGN),通过该网络(LGN),其中包括本地和全球背景,以产生高质量的建议。在本地,LGN首先以高启动和结束概率分别定位时间边界,然后将这些边界直接结合为提案。在全球范围内,LGN使用时间卷积层和锚机构同时评估多个持续时间区域的activity概率。最后,我们将每个提案的边界概率与匹配的时间区域的行为概率相结合,作为置信度分数,用于检索提案。我们在两个数据集进行实验:ActivityNet-1.3和Thumos-14,其中LGN优于高召回和高时间精度的其他最先进的方法。最后,进一步的实验表明,通过组合现有的动作分类器,我们的方法显着提高了最先进的时间作用检测性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号