首页> 外文期刊>IEEE Transactions on Circuits and Systems for Video Technology >Human Gait Recognition Based on Deterministic Learning and Data Stream of Microsoft Kinect
【24h】

Human Gait Recognition Based on Deterministic Learning and Data Stream of Microsoft Kinect

机译:基于Microsoft Kinect的确定性学习和数据流的人体步态认可

获取原文
获取原文并翻译 | 示例

摘要

Gait is an important biometric technology for human identification at a distance. This study focuses on gait features obtained by Microsoft Kinect and proposes a new model-based gait recognition method by combining deterministic learning theory and the data stream of Kinect. Deterministic learning theory is employed to capture the gait dynamics underlying Kinect-based gait parameters. Spatial-temporal gait features can be represented as the gait dynamics underlying the trajectories of spatial-temporal parameters, which can implicitly reflect the temporal changes of silhouette shape. Kinematic gait features can be represented as the gait dynamics underlying the trajectories of kinematic parameters, which can represent the temporal changes of body structure and dynamics. Both spatial-temporal and kinematic cues can be used separately for gait recognition using the smallest error principle. They are fused on the decision level to improve the gait recognition performance. Additionally, we discuss how to eliminate the effect of view angle on the proposed method. The experimental results indicate that encouraging recognition accuracy can be achieved.
机译:步态是一个重要的生物识别技术,用于距离人类识别。本研究重点介绍Microsoft Kinect获得的步态功能,并通过组合确定性学习理论和Kinect数据流来提出基于模型的步态识别方法。采用确定性学习理论来捕获基于Kinect的步态参数的步态动态。空间 - 时间步态特征可以表示为空间时间参数轨迹的步态动态,这可以隐含地反映剪影形状的时间变化。运动步态特征可以表示为运动参数轨迹的步态动态,这可以代表身体结构和动态的时间变化。空间和运动学线索都可以单独使用,以便使用最小的错误原理进行步态识别。它们融合在决策水平上以提高步态识别性能。此外,我们讨论如何消除对所提出的方法的观点的影响。实验结果表明,可以实现令人鼓舞的识别准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号