首页> 外文期刊>IEEE Transactions on Circuits and Systems. II, Express Briefs >A regularity-based hierarchical symbolic analysis method forlarge-scale analog networks
【24h】

A regularity-based hierarchical symbolic analysis method forlarge-scale analog networks

机译:基于规则的大规模模拟网络分层符号分析方法

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a novel hierarchical symbolic analysis methodnfor automatically producing relationships between the parameters of annanalog network and the building blocks of the network. The originalitynof the symbolic technique stems from exploiting regularity aspects fornaddressing the exponential complexity of the symbolic expressions. Thenregularity aspects that were identified are: 1) structural regularity:nmajority of the network blocks are connected in identical templates andn2) symbolic parameter regularity: parameters for a connection templatenrequire similar sets of operations. The paper discusses the threencomponents of the proposed symbolic analysis method: 1) an efficientnrepresentation of symbolic expressions, 2) an algorithm for constructionnof symbolic expressions; and 3) a decomposition technique for extractingnthe structural regularity of a network. For large networks, the size ofnthe symbolic models produced by our symbolic analysis method is muchnless than the size of the models produced by other methods such as thentwo-graph method. We mathematically show that the generated models arenof polynomial size if the two kinds of regularity are exploited. Thendescribed symbolic technique was implemented and used successfully fornsynthesis and optimization of different analog systems such as filtersnand communication systems
机译:本文提出了一种新颖的层次符号分析方法,用于自动生成模拟网络参​​数与网络构建块之间的关系。符号技术的独创性源于利用正则性方面来解决符号表达的指数复杂性。然后识别出的规则性方面是:1)结构规则性:大多数网络块以相同的模板连接; n2)符号参数规则性:用于连接模板的参数需要类似的操作集。本文讨论了所提出的符号分析方法的三个组成部分:1)符号表达式的有效表示; 2)符号表达式的构造算法; 2)符号表达式的构造方法。 3)一种提取网络结构规则性的分解技术。对于大型网络,通过我们的符号分析方法生成的符号模型的大小远远小于通过其他方法(如双图方法)生成的模型的大小。我们从数学上表明,如果利用两种正则性,则生成的模型的多项式大小都不是。然后实施了上述符号技术,并成功地用于各种模拟系统(如滤波器和通信系统)的综合和优化

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号