首页> 外文期刊>Circuits and Systems II: Express Briefs, IEEE Transactions on > src='/images/tex/28208.gif' alt='(4+2log n)Delta G'> Parallel Prefix Modulo- src='/images/tex/28209.gif' alt='(2^n-3)'> Adder via Double Representation of Residues in [0, 2]
【24h】

src='/images/tex/28208.gif' alt='(4+2log n)Delta G'> Parallel Prefix Modulo- src='/images/tex/28209.gif' alt='(2^n-3)'> Adder via Double Representation of Residues in [0, 2]

机译: src =“ / images / tex / 28208.gif” alt =“(4 + 2log n)Delta G”> 并行前缀模块- src =“ / images / tex / 28209.gif” alt =“(2 ^ n-3)”> 通过[0,2]中残基的双重表示加法器

获取原文
获取原文并翻译 | 示例

摘要

The most popular modulus in residue number systems (RNS), next to power-of-two modulus, are those of the form . However, in RNS applications that require a larger dynamic range, without increasing the parameter, modulus of the form are gaining popularity. Nevertheless, latency-balanced computational channels in RNS arithmetic systems are desirable. Ripple-carry modulo- adders are realized simply as one's complement adders, where serves as a second representation for 0. However, the same single -bit adder realization is not possible for modulo . Given that the efficient parallel prefix realization of modulo- adders exists, whose latency is compatible with similar modulo- adders, we are motivated to design latency-compatible parallel prefix modulo- adders. In this brief, we propose the fastest of such adders, where residues in {0, 1, 2} can be represented also as excess- encoding (i.e., , respectively) . The delay and area overhead of the proposed adder with respect to the base modulo-
机译:残差数系统(RNS)中最常用的模数是二次幂模数,其形式为。但是,在需要较大动态范围而又不增加参数的RNS应用中,表格的模数越来越受欢迎。然而,RNS算术系统中等待时间平衡的计算通道是期望的。纹波模加法器简单地实现为一个人的补码加法器,在这里用作0的第二个表示。但是,模数不可能实现相同的一位加法器。考虑到存在有效的模加器并行前缀实现,并且其延迟与类似的模加器兼容,我们有动机设计出与时延兼容的并行前缀模加器。在本简介中,我们提出了此类加法器中最快的一种,其中{0,1,2}中的残基也可以表示为过量编码(即)。提议的加法器相对于基本模数的延迟和面积开销

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号