首页> 外文期刊>Brain-Computer Interfaces >Development of a ternary hybrid fNIRS-EEG brain-computer interface based on imagined speech
【24h】

Development of a ternary hybrid fNIRS-EEG brain-computer interface based on imagined speech

机译:基于想象的语音的三元混合Fnirs-eEG脑接口的开发

获取原文
获取原文并翻译 | 示例

摘要

There is increasing interest in developing intuitive brain-computer interfaces (BCIs) to differentiate intuitive mental tasks such as imagined speech. Both electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) have been used for this purpose. However, the classification accuracy and number of commands in such BCIs have been limited. The use of multi-modal BCIs to address these issues has been proposed for some common BCI tasks, but not for imagined speech. Here, we propose a multi-class hybrid fNIRS-EEG BCI based on imagined speech. Eleven participants performed multiple iterations of three tasks: mentally repeating 'yes' or 'no' for 15 s or an equivalent duration of unconstrained rest. We achieved an average ternary classification accuracy of 70.45 ± 19.19% which is significantly better than that attained with each modality alone (p < 0.05). Our findings suggest that concurrent measurements of EEG and fNIRS can improve classification accuracy of BCIs based on imagined speech.
机译:在开发直观的脑电电脑接口(BCIS)上,越来越兴趣,以区分直观的心理任务,如想象的语音。脑电图(EEG)和功能近红外光谱(FNIR)都已用于此目的。但是,这种BCI中的分类准确性和命令数量受到限制。已经提出了使用多模态BCI解决这些问题的一些常见的BCI任务,但不是想象的演讲。在这里,我们提出了一种基于想象的语音的多级混合FNIRS-EEG BCI。 11个参与者执行了三个任务的多个迭代:在精神上重复“是”或“否”为15秒或同等的无约束休息时间。我们实现了70.45±19.19%的平均三元分类准确性,这明显优于单独使用每种方式(P <0.05)。我们的研究结果表明EEG和FNIR的并发测量可以根据想象的语音提高BCI的分类准确性。

著录项

  • 来源
    《Brain-Computer Interfaces》 |2019年第4期|128-140|共13页
  • 作者单位

    Institute of Biomaterials and Biomedical Engineering University of Toronto Toronto Canada Bloorview Research Institute Holland Bloorview Kids Rehabilitation Hospital Toronto Canada;

    Institute of Biomaterials and Biomedical Engineering University of Toronto Toronto Canada Bloorview Research Institute Holland Bloorview Kids Rehabilitation Hospital Toronto Canada;

    Institute of Biomaterials and Biomedical Engineering University of Toronto Toronto Canada Bloorview Research Institute Holland Bloorview Kids Rehabilitation Hospital Toronto Canada;

    Department of Computer Science University of Toronto Toronto Canada Vector Institute University of Toronto Toronto Canada;

    Institute of Biomaterials and Biomedical Engineering University of Toronto Toronto Canada Bloorview Research Institute Holland Bloorview Kids Rehabilitation Hospital Toronto Canada;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Brain-computer interface; imagined speech; hybrid BCI; fNIRS; EEG; regularized linear discriminant analysis (RLDA); discrete wavelet transform (DWT);

    机译:脑电脑界面;想象的演讲;杂交BCI;Fnirs;脑电图;正则线性判别分析(RLDA);离散小波变换(DWT);

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号