首页> 外文期刊>Biomedical signal processing and control >Heart rate estimation from wrist-type photoplethysmography signals during physical exercise
【24h】

Heart rate estimation from wrist-type photoplethysmography signals during physical exercise

机译:运动时根据腕式光体积描记法信号估算心率

获取原文
获取原文并翻译 | 示例

摘要

Wearable devices, such as smart watch use photoplethysmography (PPG) signals for estimating heart rate (HR). The motion artifacts (MA) contained in these PPG signals lead to an erroneous HR estimation. In this manuscript, a new de-noising algorithm has been proposed that uses the combination of cascaded recursive least square (RLS), normalized least mean square (NLMS) and least mean square (LMS) adaptive filters. The MA reduced PPG signals obtained from these cascaded adaptive filters are combined using the softmax activation function. Fast Fourier transform (FFT) is used to estimate the HR from the MA reduced PPG signals and phase vocoder is used to refine the estimated HR. The performance of the proposed method in the form of mean error, standard deviation of the mean error and mean relative error is analyzed using the 22 datasets given for IEEE Signal processing cup 2015. This resulted in an error of 1.86 beat per minute (BPM) tested on 22 datasets which is less compared to other existing methods. (C) 2019 Elsevier Ltd. All rights reserved.
机译:诸如智能手表之类的可穿戴设备使用光电容积描记术(PPG)信号来估计心率(HR)。这些PPG信号中包含的运动伪像(MA)导致错误的HR估计。在此手稿中,已提出了一种新的降噪算法,该算法结合了级联递归最小二乘(RLS),归一化最小均方(NLMS)和最小均方(LMS)自适应滤波器。从这些级联自适应滤波器获得的MA降低的PPG信号使用softmax激活函数进行组合。快速傅里叶变换(FFT)用于从MA缩减的PPG信号中估算HR,相位声码器用于优化估算的HR。使用针对IEEE信号处理杯2015给出的22个数据集分析了均值误差,均值误差的标准偏差和均值相对误差形式的建议方法的性能。这导致了1.86次/分钟(BPM)的误差在22个数据集上进行了测试,这比其他现有方法要少。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号