首页> 外文期刊>Biomedical signal processing and control >Online classification algorithm for eye-movement-based communication systems using two temporal EEG sensors
【24h】

Online classification algorithm for eye-movement-based communication systems using two temporal EEG sensors

机译:使用两个时间EEG传感器的基于眼动的通信系统的在线分类算法

获取原文
获取原文并翻译 | 示例

摘要

Real-time classification of eye movements offers an effective mode for human-machine interaction, and many eye-based interfaces have been presented in the literature. However, such systems often require that sensors be attached around the eyes, which can be obtrusive and cause discomfort. Here, we used two electroencephalography sensors positioned over the temporal areas to perform real-time classification of eye-blink and five classes of eye movement direction. We applied a continuous wavelet transform for online detection then extracted some discriminable time-series features. Using linear classification, we obtained an average accuracy of 85.2% and sensitivity of 77.6% over all classes. The results showed that the proposed algorithm was efficient in the detection and classification of eye movements, providing high accuracy and low-latency for single trials. This work demonstrates the promise of portable eyemovement-based communication systems and the sensor positions, features extraction, and classification methods used. (C) 2014 Elsevier Ltd. All rights reserved.
机译:眼动的实时分类为人机交互提供了一种有效的模式,文献中已经介绍了许多基于眼的界面。但是,这样的系统通常要求将传感器安装在眼睛周围,这可能会引人注目并引起不适。在这里,我们使用了位于颞区上方的两个脑电图传感器来对眨眼和五种眼动方向进行实时分类。我们将连续小波变换应用于在线检测,然后提取了一些可区分的时间序列特征。使用线性分类,我们在所有类别上的平均准确度均为85.2%,灵敏度为77.6%。结果表明,所提出的算法能够有效地进行眼动的检测和分类,为单次试验提供了较高的准确性和低时延。这项工作展示了基于便携式眼动仪的通信系统的前景以及所使用的传感器位置,特征提取和分类方法。 (C)2014 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号