...
首页> 外文期刊>Biomedical Microdevices >Development, manufacturing and application of double-sided flexible implantable microelectrodes
【24h】

Development, manufacturing and application of double-sided flexible implantable microelectrodes

机译:双面柔性植入式微电极的开发,制造和应用

获取原文
获取原文并翻译 | 示例

摘要

Many neuroprosthetic applications require the use of very small, flexible multi-channel microelectrodes (e.g. polyimide-based film-like electrodes) to fit anatomical constraints. By arranging the electrode contacts on both sides of the polyimide film, selectivity can be further increased without increasing size. In this work, two approaches to create such double-sided electrodes are described and compared: sandwich electrodes prepared by precisely gluing two single-sided structures together, and monolithic electrodes created using a new double-sided photolithography process. Both methods were successfully applied to manufacture double-sided electrodes for stimulation of the vestibular system. In a case study, the electrodes were implanted in the semicircular canals of three guinea pigs and proven to provide electrical stimulation of the vestibular nerve. For both the monolithic electrodes and the sandwich electrodes, long-term stability and functionality was observed over a period of more than 12 months. Comparing the two types of electrodes with respect to the manufacturing process, it can be concluded that monolithic electrodes are the preferred solution for very thin electrodes (<20 μm), while sandwich electrode technology is especially suitable for thicker electrodes (40-50 μm).
机译:许多神经假体应用要求使用非常小的,柔性的多通道微电极(例如,基于聚酰亚胺的膜状电极)以适应解剖学限制。通过将电极触点设置在聚酰亚胺膜的两侧,可以在不增加尺寸的情况下进一步提高选择性。在这项工作中,描述并比较了创建此类双面电极的两种方法:通过将两个单面结构精确粘合在一起而制成的夹心电极,以及使用新的双面光刻工艺创建的整体式电极。两种方法均成功地用于制造用于刺激前庭系统的双面电极。在一个案例研究中,电极被植入三只豚鼠的半圆形管中,并被证明可以提供对前庭神经的电刺激。对于整体式电极和夹层电极,在超过12个月的时间内都观察到了长期稳定性和功能性。比较两种电极的制造工艺,可以得出结论,单片电极是非常薄的电极(<20μm)的首选解决方案,而夹层电极技术尤其适合于较厚的电极(40-50μm) 。

著录项

  • 来源
    《Biomedical Microdevices 》 |2014年第6期| 837-850| 共14页
  • 作者单位

    Department Medical Engineering and Neuroprosthetics, Fraunhofer Institute for Biomedical Engineering, 66386 Ensheimer Strasse 48, St. Ingbert, Germany;

    Department Medical Engineering and Neuroprosthetics, Fraunhofer Institute for Biomedical Engineering, 66386 Ensheimer Strasse 48, St. Ingbert, Germany;

    Department Medical Engineering and Neuroprosthetics, Fraunhofer Institute for Biomedical Engineering, 66386 Ensheimer Strasse 48, St. Ingbert, Germany;

    Department Medical Engineering and Neuroprosthetics, Fraunhofer Institute for Biomedical Engineering, 66386 Ensheimer Strasse 48, St. Ingbert, Germany;

    Translational Neural Engineering Laboratory, Ecole Polytechnique Federate de Lausanne, Lausanne, Switzerland;

    Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear Infirmary, Boston, USA;

    Translational Neural Engineering Laboratory, Ecole Polytechnique Federate de Lausanne, Lausanne, Switzerland;

    Translational Neural Engineering Laboratory, Ecole Polytechnique Federate de Lausanne, Lausanne, Switzerland, BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy;

    Jenks Vestibular Physiology Laboratory, Massachusetts Eye and Ear Infirmary, Boston, USA;

    Department Medical Engineering and Neuroprosthetics, Fraunhofer Institute for Biomedical Engineering, 66386 Ensheimer Strasse 48, St. Ingbert, Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Microelectromechanical systems; Neural microtechnology; Neural prosthesis; Polyimides; Vestibular implant;

    机译:微机电系统;神经微技术;神经假体;聚酰亚胺;前庭植入物;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号