首页> 外文期刊>Behavior Research Methods >Analysis of residuals in contingency tables: Another nail in the coffin of conditional approaches to significance testing
【24h】

Analysis of residuals in contingency tables: Another nail in the coffin of conditional approaches to significance testing

机译:应急表中的残差分析:有条件检测的条件方法棺材中的另一个钉子

获取原文
获取原文并翻译 | 示例

摘要

Omnibus tests of significance in contingency tables use statistics of the chi-square type. When the null is rejected, residual analyses are conducted to identify cells in which observed frequencies differ significantly from expected frequencies. Residual analyses are thus conditioned on a significant omnibus test. Conditional approaches have been shown to substantially alter type I error rates in cases involving t tests conditional on the results of a test of equality of variances, or tests of regression coefficients conditional on the results of tests of heteroscedasticity. We show that residual analyses conditional on a significant omnibus test are also affected by this problem, yielding type I error rates that can be up to 6 times larger than nominal rates, depending on the size of the table and the form of the marginal distributions. We explored several unconditional approaches in search for a method that maintains the nominal type I error rate and found out that a bootstrap correction for multiple testing achieved this goal. The validity of this approach is documented for two-way contingency tables in the contexts of tests of independence, tests of homogeneity, and fitting psychometric functions. Computer code in MATLAB and R to conduct these analyses is provided as Supplementary Material.
机译:综合性表现表中的综合性意义使用Chi-Square类型的统计数据。当禁止空禁止时,进行残余分析以识别观察到的频率明显不同于预期频率的细胞。因此,残留分析在显着的综合测试中调节。有条件的方法已经显示出在涉及T检验的情况下,在涉及差异平等的测试结果的情况下基本上改变I型错误率,或者在异源性测试结果上的回归系数条件的测试。我们表明,在重要的Omnibus测试中的残留分析也受到这个问题的影响,产生I型错误率,这可以比标称速率更大6倍,具体取决于表的尺寸和边缘分布的形式。我们探索了几种无条件方法,用于搜索维护名义I类型错误率的方法,并发现对多种测试的引导校正实现了此目标。在独立性测试的背景下,对这种方法的有效性被记录在独立性,同质性测试和拟合心理模切功能的情况下的双向应变表。 Matlab和R进行这些分析的计算机代码作为补充材料提供。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号