首页> 外文期刊>Behavior Research Methods >Simple, individually unique, and context-dependent learning methods for models of human category learning
【24h】

Simple, individually unique, and context-dependent learning methods for models of human category learning

机译:简单,独特且与上下文相关的学习方法,用于人类类别学习的模型

获取原文
获取原文并翻译 | 示例

摘要

The gradient descent optimization method has been a de facto standard learning algorithm in computational models of category learning. However, it can be considered as a normative (vs. descriptive) model of human learning processes. In particular, there are three concerns associated with the learning algorithm—namely, complexity, regularity, and context independency. In response to these limitations, the present study introduces an alternative, hypothesis-testing-like learning algorithm on the basis of a stochastic optimization method. The new learning model, termed SCODEL, provides qualitatively simple interpretations for its implied category-learning processes. Moreover, SCODEL is the first modeling attempt to depict individually unique and context-dependent learning processes. Four simulation studies were conducted and showed that the present model has the competence to operate as several different types of learners in various plausibly real-life situations.
机译:梯度下降优化方法已成为类别学习计算模型中的事实上的标准学习算法。但是,可以将其视为人类学习过程的规范(相对于描述性)模型。尤其是,与学习算法相关的三个问题-复杂性,规则性和上下文无关性。针对这些局限性,本研究在随机优化方法的基础上引入了另一种类似于假设检验的学习算法。新的学习模型称为SCODEL,为其隐含的类别学习过程提供了定性的简单解释。此外,SCODEL是首次尝试建模,以分别描述独特且与上下文相关的学习过程。进行了四次模拟研究,结果表明,该模型具有在各种可能的现实生活中作为几种不同类型的学习者运行的能力。

著录项

  • 来源
    《Behavior Research Methods》 |2005年第2期|p.240-255|共16页
  • 作者

    TOSHIHIKO MATSUKA;

  • 作者单位

    Howe School of Technology Management, Stevens Institute of Technology, Castle Point on Hudson, Hoboken, NJ 07030;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 心理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号