首页> 外文期刊>Behavior Research Methods, Instruments & Computers >Computational procedures for probing interactions in OLS and logistic regression: SPSS and SAS implementations
【24h】

Computational procedures for probing interactions in OLS and logistic regression: SPSS and SAS implementations

机译:在OLS和逻辑回归中探测相互作用的计算程序:SPSS和SAS实现

获取原文
获取原文并翻译 | 示例

摘要

Researchers often hypothesize moderated effects, in which the effect of an independent variable on an outcome variable depends on the value of a moderator variable. Such an effect reveals itself statistically as an interaction between the independent and moderator variables in a model of the outcome variable. When an interaction is found, it is important to probe the interaction, for theories and hypotheses often predict not just interaction but a specific pattern of effects of the focal independent variable as a function of the moderator. This article describes the familiar pick-a-point approach and the much less familiar Johnson-Neyman technique for probing interactions in linear models and introduces macros for SPSS and SAS to simplify the computations and facilitate the probing of interactions in ordinary least squares and logistic regression. A script version of the SPSS macro is also available for users who prefer a point-and-click user interface rather than command syntax.
机译:研究人员通常假设调节作用,其中自变量对结果变量的作用取决于调节变量的值。这种结果在统计上显示为结果变量模型中自变量和主持人变量之间的相互作用。当发现相互作用时,探究相互作用是很重要的,因为理论和假设通常不仅预测相互作用,而且还会预测焦点独立变量作为主持人的作用的特定模式。本文介绍了在线性模型中探查相互作用的熟悉的“选择点”方法和不那么为人所知的Johnson-Neyman技术,并介绍了SPSS和SAS的宏,以简化计算并促进对普通最小二乘和逻辑回归中的相互作用进行探查。 。 SPSS宏的脚本版本也可用于偏爱点击式用户界面而不是命令语法的用户。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号