首页> 外文期刊>Behavior Research Methods >Using modified incremental chart parsing to ascribe intentions to animated geometric figures
【24h】

Using modified incremental chart parsing to ascribe intentions to animated geometric figures

机译:使用修改后的增量图表解析将意图归因于动画几何图形

获取原文
获取原文并翻译 | 示例

摘要

People spontaneously ascribe intentions on the basis of observed behavior, and research shows that they do this even with simple geometric figures moving in a plane. The latter fact suggests that 2-D animations isolate critical information—object movement—that people use to infer the possible intentions (if any) underlying observed behavior. This article describes an approach to using motion information to model the ascription of intentions to simple figures. Incremental chart parsing is a technique developed in natural-language processing that builds up an understanding as text comes in one word at a time. We modified this technique to develop a system that uses spatiotemporal constraints about simple figures and their observed movements in order to propose candidate intentions or nonagentive causes. Candidates are identified via partial parses using a library of rules, and confidence scores are assigned so that candidates can be ranked. As observations come in, the system revises its candidates and updates the confidence scores. We describe a pilot study demonstrating that people generally perceive a simple animation in a manner consistent with the model.
机译:人们根据观察到的行为自发地将意图归因于人,并且研究表明,即使简单的几何图形在平面中移动,他们也会这样做。后一个事实表明,二维动画会隔离关键信息-对象运动-人们用来推断观察到的行为的潜在意图(如果有)。本文介绍了一种使用运动信息对简单人物意图归属进行建模的方法。增量图表解析是一种自然语言处理中开发的技术,可在每次输入一个单词时建立理解。我们修改了此技术,以开发一种系统,该系统使用对简单图形及其观察到的运动的时空约束,以提出候选意图或非代理原因。使用规则库通过部分语法分析识别候选人,并分配可信度分数,以便对候选人进行排名。随着观察结果的进入,系统会修改其候选项并更新置信度分数。我们描述了一项初步研究,证明人们通常以与模型一致的方式感知简单的动画。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号