首页> 外文期刊>Autonomous agents and multi-agent systems >Learning multi-agent communication with double attentional deep reinforcement learning
【24h】

Learning multi-agent communication with double attentional deep reinforcement learning

机译:学习多智能经纪人沟通与双重预付深度加强学习

获取原文
获取原文并翻译 | 示例

摘要

Communication is a critical factor for the big multi-agent world to stay organized and productive. Recently, Deep Reinforcement Learning (DRL) has been adopted to learn the communication among multiple intelligent agents. However, in terms of the DRL setting, the increasing number of communication messages introduces two problems: (1) there are usually some redundant messages; (2) even in the case that all messages are necessary, how to process a large number of messages in an efficient way remains a big challenge. In this paper, we propose a DRL method named Double Attentional Actor-Critic Message Processor (DAACMP) to jointly address these two problems. Specifically, DAACMP adopts two attention mechanisms. The first one is embedded in the actor part, such that it can select the important messages from all communication messages adaptively. The other one is embedded in the critic part so that all important messages can be processed efficiently. We evaluate DAACMP on three multi-agent tasks with seven different settings. Results show that DAACMP not only outperforms several state-of-the-art methods but also achieves better scalability in all tasks. Furthermore, we conduct experiments to reveal some insights about the proposed attention mechanisms and the learned policies.
机译:沟通是大型多社世界保持有组织和富有成效的关键因素。最近,已经采用了深度强化学习(DRL)来学习多种智能代理商之间的沟通。但是,就DRL设置而言,越来越多的通信消息引入了两个问题:(1)通常存在一些冗余消息; (2)即使在所有消息都是必要的情况下,如何以有效的方式处理大量消息仍然是一个大挑战。在本文中,我们提出了一个名为Double Interpressal Actor-resport邮件处理器(DAACMP)的DRL方法,共同解决这两个问题。具体而言,DAACMP采用两个注意机制。第一个嵌入在演员部分中,使得它可以自适应地选择来自所有通信消息的重要消息。另一个嵌入在批评者部分中,以便可以有效地处理所有重要信息。我们在具有七种不同设置的三个多代理任务上评估DAACMP。结果表明,DAACMP不仅优于多种最先进的方法,而且还可以在所有任务中实现更好的可扩展性。此外,我们进行实验,揭示了对提出的注意机制和学习政策的一些见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号