首页> 外文期刊>IEEE transactions on automation science and engineering >Dynamically optimal policies for stochastic scheduling subject to preemptive-repeat machine breakdowns
【24h】

Dynamically optimal policies for stochastic scheduling subject to preemptive-repeat machine breakdowns

机译:具有先发性重复机器故障的随机调度动态最优策略

获取原文
获取原文并翻译 | 示例

摘要

We consider the problem of finding a dynamically optimal policy to process n jobs on a single machine subject to stochastic breakdowns. We study the preemptive-repeat breakdown model, i.e., if a machine breaks down during the processing of a job, the work done on the job prior to the breakdown is lost and the job will have to be started over again. Our study is built on a general setting, which allows: 1) the uptimes and downtimes of the machine to follow general probability distributions, not necessarily independent of each other; 2) the breakdown process to depend upon the job being processed; and 3) the processing times of the jobs to be random variables following arbitrary distributions. We consider two possible cases for the processing time of a job interrupted by a breakdown: a) it is resampled according to its probability distribution or b) it is the same random variable as that before the breakdown. We introduce the concept of occupying time and find its Laplace and integral transforms. For the problem with resampled processing times, we establish a general optimality equation on the optimal dynamic policy under a unified objective measure. We deduce from the optimality equation the optimal dynamic policies for several problems with well-known criteria, including weighted discounted reward, weighted flowtime, truncated cost, number of tardy jobs under stochastic order, and maximum holding cost. For the problem with same random processing time, we develop the optimal dynamic policy via the theory of bandit process. A set of Gittins indices are derived that give the optimal dynamic policies under the criteria of weighted discounted reward and weighted flowtime. Note to Practitioners-It is common in practice that a machine is subject to breakdowns, which may severely interrupt the job it is processing. In such a situation, there may be limited information on the breakdown patterns of the machine and the processing requirements of the jobs. A great challenge faced by the decision-maker is how to utilize the information available to make a right decision. Stochastic scheduling considering stochastic machine breakdowns aims to determine the optimal policies in these situations. In this paper, we study the problem within the preemptive-repeat- breakdown framework, to address the practical situations where a job will have to be re-started again if a machine breakdown occurs when it is being processed. Problems of such can be found in many industrial applications. Examples include refining metal in a refinery factory, running a program on a computer, performing a reliability test on a facility, etc. Generally, if a job must be continuously processed with no interruption until it is totally completed, then the preemptive-repeat breakdown formulation should be used. Our research in this paper focuses on optimal dynamic policies, which aim to utilize real-time information to dynamically adjust/improve a decision. We consider two types of models, depending on whether the processing time of the job interrupted by a breakdown must be resampled or not. For the problem with resampled processing times, we establish a general optimality equation under a unified objective measure. We further deduce the optimal dynamic policies under a number of well-known criteria. For the problem without resampled processing times, we develop the optimal dynamic policies, under the criteria of weighted discounted reward and weighted flowtime. Broadly speaking, our findings can be applied in any situations where it is desirable to derive the best dynamic decisions to tackle the problem with stochastic machine breakdowns and preemptive-repeat jobs.
机译:我们考虑以下问题:寻找动态最优策略来处理一台机器上随机故障的n个作业。我们研究了抢先重复故障模型,即,如果在处理作业期间机器发生故障,则故障之前在该工作上完成的工作将丢失,并且必须重新开始工作。我们的研究建立在一个通用设置的基础上,它允许:1)机器的正常运行时间和停机时间遵循总体概率分布,而不必彼此独立; 2)分解过程取决于要处理的作业; 3)作业的处理时间是遵循任意分布的随机变量。对于被中断中断的作业,我们考虑两种可能的处理时间情况:a)根据其概率分布重新采样; b)与中断之前的随机变量相同。我们介绍了占用时间的概念,并找到了其Laplace和积分变换。对于重采样处理时间的问题,我们在统一的客观测度下针对最优动态策略建立了一般最优方程。我们从最优方程推导了针对具有众所周知标准的多个问题的最优动态策略,包括加权贴现奖励,加权流水时间,截断成本,随机订单下的迟到工作数量以及最大持有成本。对于具有相同随机处理时间的问题,我们通过强盗过程理论开发了最优动态策略。得出一组Gittins指数,这些指数在加权折扣奖励和加权流动时间的标准下给出了最佳动态策略。给从业者的注意事项-在实践中,机器经常会发生故障,这可能会严重中断机器正在处理的工作。在这种情况下,关于机器的故障模式和作业的处理要求的信息可能有限。决策者面临的一大挑战是如何利用可用信息做出正确的决策。考虑随机机器故障的随机调度旨在确定这些情况下的最佳策略。在本文中,我们研究了抢先-重复-故障框架内的问题,以解决实际情况,如果在处理作业时发生机器故障,则必须重新启动该作业。这样的问题可以在许多工业应用中发现。例如,在炼油厂中提炼金属,在计算机上运行程序,在设施上执行可靠性测试等。通常,如果必须在不中断作业的情况下对其进行连续处理直到其完全完成,则抢先重复击穿应使用配方。我们在本文中的研究集中在最优动态策略上,该策略旨在利用实时信息来动态调整/改进决策。我们考虑两种类型的模型,具体取决于是否必须重新采样因故障而中断的作业的处理时间。对于重采样处理时间的问题,我们在统一的客观测度下建立了一般的最优方程。我们根据许多众所周知的标准进一步推导了最优动态策略。对于没有重采样处理时间的问题,我们在加权贴现奖励和加权流水时间的标准下制定了最佳动态策略。从广义上讲,我们的发现可用于需要得出最佳动态决策以解决随机机器故障和先发制人的重复工作的问题的任何情况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号