首页> 外文期刊>IEEE Transactions on Automatic Control >A generalized Bezoutian matrix with respect to a polynomial sequence of interpolatory type
【24h】

A generalized Bezoutian matrix with respect to a polynomial sequence of interpolatory type

机译:关于插值型多项式序列的广义Bezoutian矩阵

获取原文
获取原文并翻译 | 示例

摘要

In this note, a generalized Bezoutian matrix with respect to a polynomial sequence of interpolatory type is introduced. The operator representation relative to a pair of dual bases and the generalized Barnett-type factorization formula are derived. An intertwining relation and a Bezoutian reduction to a block diagonal form by congruence via a generalized Vandermonde matrix are presented. Fujiwara-Hermite and Routh-Hurwitz criteria in terms of this generalized Bezout matrix are obtained.
机译:在此注释中,引入了关于插值类型的多项式序列的广义Bezoutian矩阵。推导了相对于一对双碱基的算符表示和广义的Barnett型分解公式。提出了通过广义范德蒙矩阵的同余关系的交织关系和Bezoutian对块对角线形式的约简。根据该广义Bezout矩阵,获得了Fujiwara-Hermite和Routh-Hurwitz准则。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号